OpenCV中图像的自适应处理、Otsu方法讲解与实战(附Python源码)

简介: OpenCV中图像的自适应处理、Otsu方法讲解与实战(附Python源码)

需要源码请点赞关注收藏后评论区留言私信~~~

一、自适应处理

很多时候图像色彩是不均衡的,如果只使用一种阈值处理类型,就无法得到清晰有效的结果

下面使用五种常用的阈值处理类型对色彩不均衡的图像进行处理

代码如下

import cv2
image = cv2.imread("4.27.png") # 读取4.27.png
image_Gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 将4.27.png转换为灰度图像
t1, dst1 = cv2.threshold(image_Gray, 127, 255, cv2.THRESH_BINARY) # 二值化阈值处理
t2, dst2 = cv2.threshold(image_Gray, 127, 255, cv2.THRESH_BINARY_INV) # 反二值化阈值处理
t3, dst3 = cv2.threshold(image_Gray, 127, 255, cv2.THRESH_TOZERO) # 低于阈值零处理
t4, dst4 = cv2.threshold(image_Gray, 127, 255, cv2.THRESH_TOZERO_INV) # 超出阈值零处理
t5, dst5 = cv2.threshold(image_Gray, 127, 255, cv2.THRESH_TRUNC) # 截断处理
# 分别显示经过5种阈值类型处理后的图像
cv2.imshow("BINARY", dst1)
cv2.imshow("BINARY_INV", dst2)
cv2.imshow("TOZERO", dst3)
cv2.imshow("TOZERO_INV", dst4)
cv2.imshow("TRUNC", dst5)
cv2.waitKey() # 按下任何键盘按键后
cv2.destroyAllWindows() # 销毁所有窗口

从视觉上看,对于色彩不均衡的图像,虽然使用截断处理的效果是五种阈值处理类型中效果比较好的,但是有些轮廓依然模糊不清

OpenCV提供了一种改进的阈值处理技术,图像中的不同区域使用不同的阈值,把这种改进的阈值处理技术称作自适应处理,自适应处理是根据图像中某一个正方形区域内的所有像素值按照指定的算法计算得到的。自适应处理能更好的处理明暗分布不均匀的图像,获得更简单的图像效果

OpenCV提供了adaptiveThresHole方法对图像进行自适应处理 语法格式如下

dst=cv2.adaptiveThreshold(src,maxValue,adaptiveMethod,thresholdType,blocksize,C)

maxValue阈值处理采用的最大值

adaptiveMethod 自适应阈值的计算方法 如下图所示

blocksize 一个正方形区域的带线啊哦

C 常量 阈值等于均值或者加权值减去这个常量

自适应处理保留了图像中的更多细节信息,更明显的保留了灰度图像主题的轮廓

代码如下

import cv2
image = cv2.imread("4.27.png") # 读取4.27.png
image_Gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 将4.27.png转换为灰度图像
# 自适应阈值的计算方法为cv2.ADAPTIVE_THRESH_MEAN_C
athdMEAM = cv2.adaptiveThreshold\
    (image_Gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 5, 3)
# 自适应阈值的计算方法为cv2.ADAPTIVE_THRESH_GAUSSIAN_C
athdGAUS = cv2.adaptiveThreshold\
    (image_Gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY, 5, 3)
# 显示自适应阈值处理的结果
cv2.imshow("MEAN_C", athdMEAM)
cv2.imshow("GAUSSIAN_C", athdGAUS)
cv2.waitKey() # 按下任何键盘按键后
cv2.destroyAllWindows() # 销毁所有窗口

二、Otsu方法

逐个寻找最合适的阈值不仅工作量大,而且效率低,为此OpenCV提供了Otsu方法,Otsu方法能够遍历所有可能的阈值,从中找到最合适的阈值

Otsu方法与thrshold方法语法基本一致,只不过为type传递参数时,要多传递一个参数,它的作用就是实现Otsu方法的阈值处理

下面是一幅亮度较高的图像,分别对这副图像进行二值化处理和实现Otsu方法的阈值处理,对比处理后的图像的差异如下

通过上图可以发现,通过Otsu方法的阈值处理可以找到最合适的阈值,这样可以将图像主题的轮廓很好的保存下来,获得了比较好的处理效果

代码如下

import cv2
image = cv2.imread("4.36.jpg") # 读取4.36.jpg
image_Gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 将4.36.jpg转换为灰度图像
t1, dst1 = cv2.threshold(image_Gray, 127, 255, cv2.THRESH_BINARY) # 二值化阈值处理
# 实现Otsu方法的阈值处理
t2, dst2 = cv2.threshold(image_Gray, 0, 255, cv2.THRESH_BINARY  + cv2.THRESH_OTSU)
cv2.putText(dst2, "best threshold: " + str(t2), (0, 30),
         cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2) # 在图像上绘制最合适的阈值
cv2.imshow("BINARY", dst1) # 显示二值化阈值处理的图像
cv2.imshow("OTSU", dst2) # 显示实现Otsu方法的阈值处理
cv2.waitKey() # 按下任何键盘按键后
cv2.destroyAllWindows() # 销毁所有窗口

三、阈值处理的作用

阈值处理在计算机视觉技术中占有十分重要的位置,它是很多高级算法的底层处理逻辑之一,因为二值图像会忽略细节,放大特征,而很多高级算法要根据物体的轮廓来分析物体热症,所以二值图像非常适合做复杂的识别运算,在进行识别之前,应该先将图像转为灰度图像,再进行二值化处理,这样就得到了算法所需要物体的大概轮廓

下面利用阈值处理勾勒楼房和汽车的轮廓

从后面两幅图像可以看出,二值化处理后,图片只有纯黑和纯白两种颜色,图像中的楼房边缘变得更加鲜明,更容易被识别,地面因为颜色较深,所以大面积被涂黑,这样白色的汽车就与地面形成鲜明的反差,高级图像识别算法可以根据这种鲜明的像素变化提取特征,最后达到识别物体分类的目的

代码如下

import cv2
img = cv2.imread("car.jpg")  # 原始图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 转为灰度图像
t1, dst1 = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)  # 二值化阈值处理
t2, dst2 = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV)  # 反二值化阈值处理
cv2.imshow("img", img)  # 显示图像
cv2.imshow("gray", gray)
cv2.imshow("dst1", dst1)
cv2.imshow("dst2", dst2)
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

总结

OpenCV提供了一个可以快速抠出图像主体线条的工具,这个工具就是阈值。在阈值的作用下,一幅彩色图像被转换为只有纯黑和纯白的二值图像。然而,灰度图像经5种阈值处理类型处理后,都无法得到图像主体的线条。为此,OpenCV提供了一种改进的阈值处理技术,即自适应处理,其关键在于对图像中的不同区域使用不同的阈值

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
17天前
|
测试技术 数据库 Python
Python装饰器实战:打造高效性能计时工具
在数据分析中,处理大规模数据时,分析代码性能至关重要。本文介绍如何使用Python装饰器实现性能计时工具,在不改变现有代码的基础上,方便快速地测试函数执行时间。该方法具有侵入性小、复用性强、灵活度高等优点,有助于快速发现性能瓶颈并优化代码。通过设置循环次数参数,可以更准确地评估函数的平均执行时间,提升开发效率。
92 61
Python装饰器实战:打造高效性能计时工具
|
14天前
|
运维 Shell 数据库
Python执行Shell命令并获取结果:深入解析与实战
通过以上内容,开发者可以在实际项目中灵活应用Python执行Shell命令,实现各种自动化任务,提高开发和运维效率。
46 20
|
13天前
|
XML 机器学习/深度学习 人工智能
使用 OpenCV 和 Python 轻松实现人脸检测
本文介绍如何使用OpenCV和Python实现人脸检测。首先,确保安装了OpenCV库并加载预训练的Haar特征模型。接着,通过读取图像或视频帧,将其转换为灰度图并使用`detectMultiScale`方法进行人脸检测。检测到的人脸用矩形框标出并显示。优化方法包括调整参数、多尺度检测及使用更先进模型。人脸检测是计算机视觉的基础技术,具有广泛应用前景。
46 10
|
2月前
|
数据采集 存储 XML
python实战——使用代理IP批量获取手机类电商数据
本文介绍了如何使用代理IP批量获取华为荣耀Magic7 Pro手机在电商网站的商品数据,包括名称、价格、销量和用户评价等。通过Python实现自动化采集,并存储到本地文件中。使用青果网络的代理IP服务,可以提高数据采集的安全性和效率,确保数据的多样性和准确性。文中详细描述了准备工作、API鉴权、代理授权及获取接口的过程,并提供了代码示例,帮助读者快速上手。手机数据来源为京东(item.jd.com),代理IP资源来自青果网络(qg.net)。
|
6月前
|
SQL JSON C语言
Python中字符串的三种定义方法
Python中字符串的三种定义方法
139 2
|
8月前
|
Python
python之字符串定义、切片、连接、重复、遍历、字符串方法
python之字符串定义、切片、连接、重复、遍历、字符串方法
python之字符串定义、切片、连接、重复、遍历、字符串方法
28.从入门到精通:Python3 面向对象 面向对象技术简介 类定义 类对象 类的方法
28.从入门到精通:Python3 面向对象 面向对象技术简介 类定义 类对象 类的方法
|
Python
Python面向对象、类的抽象、类的定义、类名遵循大驼峰的命名规范创建对象、类外部添加和获取对象属性、类内部操作属性魔法方法__init__()__str__()__del__()__repr__()
面向对象和面向过程,是两种编程思想. 编程思想是指对待同一个问题,解决问题的套路方式.面向过程: 注重的过程,实现的细节.亲力亲为.面向对象: 关注的是结果, 偷懒.类和对象,是面向对象中非常重要的两个概念object 是所有的类基类,即最初始的类class 类名(object): 类中的代码PEP8代码规范:类定义的前后,需要两个空行 创建的对象地址值都不一样如dog和dog1的地址就不一样,dog的地址为2378043254528dog1的地址为2378044849840 8.类内部操作属性 sel
281 1
Python面向对象、类的抽象、类的定义、类名遵循大驼峰的命名规范创建对象、类外部添加和获取对象属性、类内部操作属性魔法方法__init__()__str__()__del__()__repr__()
|
2月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!

热门文章

最新文章