Pandas和pyecharts绘制某天多省区连续确诊病例无新增天数的玫瑰图实战(附源码)

简介: Pandas和pyecharts绘制某天多省区连续确诊病例无新增天数的玫瑰图实战(附源码)

需要源码请点赞关注收藏后评论区留言私信~~~

下面绘制统计某天多省和自治区新馆肺炎连续确诊病例无新增天数的玫瑰图

效果如下

可见图像十分美观 而且表达的含义也很明确,一目了然

部分代码如下

from pyecharts import options as opts 
from pyecharts.charts import Geo 
from pyecharts.globals import ChartType, SymbolType
c = (
        Geo()
        .add_schema(maptype="china")
        .add( "",
            [ ("哈尔滨", 66), ("重庆", 88), ("上海", 100), ("乌鲁木齐", 30),("北京", 30),("兰州",170)],
            type_=ChartType.EFFECT_SCATTER,
            color="green",
        )
        .add(
            "geo",
            [("北京", "兰州"),( "兰州","北京"), ("重庆", "杭州"),("哈尔滨", "重庆"),("乌鲁木齐", "哈尔滨")],
            type_=ChartType.LINES,
            effect_opts=opts.EffectOpts(
                symbol=SymbolType.ARROW, symbol_size=6, color="blue"
            ),
            linestyle_opts=opts.LineStyleOpts(curve=0.2),
        )
        .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
        .set_global_opts(title_opts=opts.TitleOpts(title="主要城市航班路线和数量"))
    )
c.render_notebook()

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
9月前
|
数据采集 机器学习/深度学习 数据挖掘
利用Beautiful Soup和Pandas进行网页数据抓取与清洗处理实战
本文通过一个实战案例,介绍如何使用Python中的Beautiful Soup库抓取网页数据,并用Pandas进行清洗和处理。首先,确保安装了requests、beautifulsoup4和pandas库。接着,通过requests获取HTML内容,使用Beautiful Soup解析并提取新闻标题、发布时间和正文。然后,利用Pandas对数据进行清洗,包括去除多余空格、替换特殊字符、删除无效数据等。最后,根据需求进行数据处理(如过滤关键词)并保存为CSV或Excel文件。这个案例适合初学者和有一定经验的用户,帮助快速掌握这两个强大的工具。
325 3
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
数据挖掘 Python
Pandas实战(1):电商购物用户行为数据分析
Pandas实战(1):电商购物用户行为数据分析
642 1
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
数据挖掘 Python
Pandas实战(3):电商购物用户行为数据分析
Pandas实战(3):电商购物用户行为数据分析
375 1
|
数据挖掘 Python
Pandas实战(2):电商购物用户行为数据分析
Pandas实战(2):电商购物用户行为数据分析
269 1
|
数据采集 数据可视化 数据挖掘
Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
【10月更文挑战第3天】Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
725 0
|
数据挖掘 Python
Pandas数据分析实战(2):2023美国财富1000强公司情况
Pandas数据分析实战(2):2023美国财富1000强公司情况
189 0
|
数据采集 数据挖掘 Python
Pandas数据分析实战(1):2023美国财富1000强公司情况
Pandas数据分析实战(1):2023美国财富1000强公司情况
227 0
|
数据采集 数据挖掘 数据处理
解锁Python数据分析新技能!Pandas实战学习,让你的数据处理能力瞬间飙升!
【8月更文挑战第22天】Python中的Pandas库简化了数据分析工作。本文通过分析一个金融公司的投资数据文件“investment_data.csv”,介绍了Pandas的基础及高级功能。首先读取并检查数据,包括显示前几行、列名、形状和数据类型。随后进行数据清洗,移除缺失值与重复项。接着转换日期格式,并计算投资收益。最后通过分组计算平均投资回报率,展示了Pandas在数据处理与分析中的强大能力。
185 0
下一篇
oss云网关配置