【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)

简介: 【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

下面对学生成句和表现等数据可视化分析

1:导入模块

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['simhei']
plt.rcParams['font.serif'] = ['simhei']
import warnings
warnings.filterwarnings('ignore')

2:获取数据 并打印前四行

from matplotlib.font_manager import FontProperties
myfont=FontProperties(fname=r'C:\Windows\Fonts\SimHei.ttf',size=12)
sns.set(font=myfont.get_name())
df = pd.read_csv('.\data\StudentPerformance.csv')
df.head(4)

属性列表对应含义如下

Gender  性别

Nationality  国籍

PlaceofBirth 出生地

Stageid 学校级别

Gradeid 年级

Sectionid  班级

Topic 科目

semester 学期

ralation 孩子家庭教育负责人

raisedhands 学生上课举手的次数

announcementviews 学生浏览在线课件的次数

discussion 学生参与课堂讨论的次数

parentanswersurvey 家长是否填了学校的问卷

parentschoolsatisfaction 家长对于学校的满意度

studentabsencedays         学生缺勤天数

3:数据可视化分析

接下来线修改表列名 换成中文

df.rename(columns={'gender':'性别','NationalITy':'国籍','PlaceofBirth':'出生地',
                   'StageID':'学段','GradeID':'年级','SectionID':'班级','Topic':'科目',
                  'Semester':'学期','Relation':'监管人','raisedhands':'举手次数',
                  'VisITedResources':'浏览课件次数','AnnouncementsView':'浏览公告次数',
                  'Discussion':'讨论次数','ParentAnsweringSurvey':'父母问卷',
                  'ParentschoolSatisfaction':'家长满意度','StudentAbsenceDays':'缺勤次数',
                   'Class':'成绩'},inplace=True)
df.replace({'lowerlevel':'小学','MiddleSchool':'中学','HighSchool':'高中'},inplace=True)
df.columns

显示学期和学段的取值

然后修改数据

df.replace({'lowerlevel':'小学','MiddleSchool':'中学','HighSchool':'高中'},inplace=True)
df['性别'].replace({'M':'男','F':'女'},inplace=True)
df['学期'].replace({'S':'春季','F':'秋季'},inplace=True)
df.head(4)

查看空缺数据情况

df.isnull().sum()

查看数据统计情况

然后按成绩绘制计数柱状图

sns.countplot(x = '成绩', order = ['L', 'M', 'H'], data = df, linewidth=2,edgecolor=sns.color_palette("dark",4))

接着按性别绘制计数柱状图

sns.countplot(x = '性别', order = ['女', '男'],data = df)

按科目绘制计数柱状图

sns.set_style('whitegrid')
sns.set(rc={'figure.figsize':(16,8)},font=myfont.get_name(),font_scale=1.5)
sns.countplot(x = '科目', data = df)

按科目绘制不同成绩的计数柱状图

按性别和成绩绘制计数柱状图

sns.countplot(x = '性别', hue = '成绩',data = df, order = ['女', '男'], hue_order = ['L', 'M', 'H'])

按班级查看成绩分布比例

sns.countplot(x = '班级', hue='成绩', data=df, hue_order = ['L','M','H'])
# 从这里可以看出虽然每个班人数较少,但是没有那个班优秀的人数的比例比较突出,这个特征可以删除

分析4个表现和成绩的相关性

# 了解四个课堂和课后表现与成绩的相关性
fig, axes = plt.subplots(2,2,figsize=(14,10))
sns.barplot(x='成绩', y='浏览课件次数',data=df,order=['L','M','H'],ax=axes[0,0])
sns.barplot(x='成绩', y='浏览公告次数',data=df,order=['L','M','H'],ax=axes[0,1])
sns.barplot(x='成绩', y='举手次数',data=df,order=['L','M','H'],ax=axes[1,0])
sns.barplot(x='成绩', y='讨论次数',data=df,order=['L','M','H'],ax=axes[1,1])
# 在sns.barplot中,默认的计算方式为计算平均值

分析不同成绩学生的讨论情况

# 了解举手次数与成绩之间的相关性
sns.set(rc={'figure.figsize':(8,6)},font=myfont.get_name(),font_scale=1.5)
sns.boxplot(x='成绩',y='讨论次数',data=df,order=['L','M','H'])

分析举手次数和参加讨论次数的相关性

# 了解四个课堂后量化表现之间的相关性
# fig,axes = plt.subplots(2,1,figsize=(10,10))
sns.regplot(x='举手次数',y='讨论次数',order =4,data=df)
# sns.regplot(x='浏览公告次数',y='浏览课件次数',order=4,data=df,ax=axes[1])   ,ax=axes[0]

分析浏览课件次数 举手次数 浏览公告次数 讨论次数之间的相关性

# Correlation Matrix 相关性矩阵
corr = df[['浏览课件次数','举手次数','浏览公告次数','讨论次数']].corr()
corr

最后将相关矩阵用热力图可视化显示

# Correlation Matrix Visualization 相关性可视化
sns.heatmap(corr,xticklabels=corr.columns,yticklabels=corr.columns)

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
23天前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
67 5
|
1月前
|
机器学习/深度学习 数据可视化 Python
Python实用记录(三):通过netron可视化模型
使用Netron工具在Python中可视化神经网络模型,包括安装Netron、创建文件和运行文件的步骤。
34 2
Python实用记录(三):通过netron可视化模型
|
12天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
14天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
1月前
|
数据采集 Web App开发 数据可视化
Python爬虫教程:Selenium可视化爬虫的快速入门
Python爬虫教程:Selenium可视化爬虫的快速入门
|
1月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据处理与可视化——以气温数据分析为例
【10月更文挑战第12天】使用Python进行数据处理与可视化——以气温数据分析为例
201 0
|
1月前
|
索引 Python
Excel学习笔记(一):python读写excel,并完成计算平均成绩、成绩等级划分、每个同学分数大于70的次数、找最优成绩
这篇文章是关于如何使用Python读取Excel文件中的学生成绩数据,并进行计算平均成绩、成绩等级划分、统计分数大于70的次数以及找出最优成绩等操作的教程。
62 0
|
1月前
|
数据采集 数据可视化 数据挖掘
Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
【10月更文挑战第3天】Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
91 0
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
如何理解数据分析及数据的预处理,分析建模,可视化
如何理解数据分析及数据的预处理,分析建模,可视化
50 0
|
3月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
82 2
下一篇
无影云桌面