【Python机器学习】KNN进行水果分类和分类器实战(附源码和数据集)

简介: 【Python机器学习】KNN进行水果分类和分类器实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

KNN算法简介

KNN(K-Nearest Neighbor)算法是机器学习算法中最基础、最简单的算法之一。它既能用于分类,也能用于回归。KNN通过测量不同特征值之间的距离来进行分类。

KNN算法的思想非常简单:对于任意n维输入向量,分别对应于特征空间中的一个点,输出为该特征向量所对应的类别标签或预测值。

KNN算法是一种非常特别的机器学习算法,因为它没有一般意义上的学习过程。它的工作原理是利用训练数据对特征向量空间进行划分,并将划分结果作为最终算法模型。存在一个样本数据集合,也称作训练样本集,并且样本集中的每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。

输入没有标签的数据后,将这个没有标签的数据的每个特征与样本集中的数据对应的特征进行比较,然后提取样本中特征最相近的数据(最近邻)的分类标签。

一般而言,我们只选择样本数据集中前k个最相似的数据,这就是KNN算法中K的由来,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的类别,作为新数据的分类。

KNN分类算法的分类预测过程十分简单并容易理解:对于一个需要预测的输入向量x,我们只需要在训练数据集中寻找k个与向量x最近的向量的集合,然后把x的类别预测为这k个样本中类别数最多的那一类。

KNN算法中只有一个超参数k,k值的确定对KNN算法的预测结果有着至关重要的影响。接下来,我们讨论一下k值大小对算法结果的影响以及一般情况下如何选择k值。

如果k值比较小,相当于我们在较小的领域内训练样本对实例进行预测。这时,算法的近似误差(Approximate Error)会比较小,因为只有与输入实例相近的训练样本才会对预测结果起作用。

但是,它也有明显的缺点:算法的估计误差比较大,预测结果会对近邻点十分敏感,也就是说,如果近邻点是噪声点的话,预测就会出错。因此,k值过小容易导致KNN算法的过拟合。

同理,如果k值选择较大的话,距离较远的训练样本也能够对实例预测结果产生影响。这时候,模型相对比较鲁棒,不会因为个别噪声点对最终预测结果产生影响。但是缺点也十分明显:算法的近邻误差会偏大,距离较远的点(与预测实例不相似)也会同样对预测结果产生影响,使得预测结果产生较大偏差,此时模型容易发生欠拟合。

因此,在实际工程实践中,我们一般采用交叉验证的方式选取k值。通过以上分析可知,一般k值选得比较小,我们会在较小范围内选取k值,同时把测试集上准确率最高的那个确定为最终的算法超参数k。

使用KNN进行水果分类

部分数据如下

预测结果和精确度如下

部分代码如下

from sklearn import datasets
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
import pandas as pd
#导入水果数据并查看数据特征
fruit = pd.read_csv('fruit_data.txt','\t')
# 获取属性
X = fruit.iloc[:,1:]
# 获取类别
Y = fruit.iloc[:,0].T
# 划分成测试集和训练集
fruit_train_X,fruit_test_X,fruit_train_y,fruit_test_y=train_test_split(X,Y,test_size=0.2, random_state=0)
#分类eighborsClassifier()
#对训练集进行训练
knn.fit(fruit_train_X, fruit_train_y)
#对测试集数据的水果类型进行预测
predict_result = knn.predict(fruit_test_X)
print('测试集大小:',fruit_test_X.shape)
print('真实结果:',fruit_test_y)
print('预it_test_y))

绘制KNN分类器图

分类结果如下 可以看到鸢尾花数据集大致分为三类

部分代码如下

import numpy as np
from sklearn import neighbors, datasets
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
# 建立KNN模型,使用前两个特征
iris = datasets.load_iris()
irisData = iris.data[:, :2]   # Petal length、Petal width特征
irisTarget = iris.target
clf = neors.KNeighborsClassifier(5) # K=5
clf.fit(irisData, irisTarget)
#绘制plot 
ColorMp = ListedColormap(['#005500', '#00AA00', '#00FF00'])
X_min, X_max = irisData[:, 0].min(), irisData[:, 0].max()
Y_min
label = clf.predict(np.c_[X.ravel(), Y.ravel()])
label = label.reshape(X.shape) 
#绘图并显示
plt.figure()
plt.pcolormesh(X,Y,label,cmap=ColorMp)
plt.show()

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
1月前
|
机器学习/深度学习 算法 Python
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
105 7
|
1月前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
1月前
|
机器学习/深度学习 数据可视化 算法
Python 高级编程与实战:深入理解数据科学与机器学习
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化和调试技巧。本文将深入探讨 Python 在数据科学和机器学习中的应用,并通过实战项目帮助你掌握这些技术。
|
2月前
|
机器学习/深度学习 数据可视化 算法
Python与机器学习:使用Scikit-learn进行数据建模
本文介绍如何使用Python和Scikit-learn进行机器学习数据建模。首先,通过鸢尾花数据集演示数据准备、可视化和预处理步骤。接着,构建并评估K近邻(KNN)模型,展示超参数调优方法。最后,比较KNN、随机森林和支持向量机(SVM)等模型的性能,帮助读者掌握基础的机器学习建模技巧,并展望未来结合深度学习框架的发展方向。
91 9
Python与机器学习:使用Scikit-learn进行数据建模
|
算法 数据挖掘 Python
python实现KNN(最近邻)算法
python实现KNN(最近邻)算法
221 0
|
算法 Python 机器学习/深度学习
Python 实现 KNN(K-近邻)算法
Python 实现 KNN(K-近邻)算法 一、概述   KNN(K-最近邻)算法是相对比较简单的机器学习算法之一,它主要用于对事物进行分类。用比较官方的话来说就是:给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例, 这K个实例的多数属于某个类,就把该输入实例分类到这个类中。
4113 0
|
1月前
|
机器学习/深度学习 存储 设计模式
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
|
23天前
|
人工智能 Java 数据安全/隐私保护
[oeasy]python081_ai编程最佳实践_ai辅助编程_提出要求_解决问题
本文介绍了如何利用AI辅助编程解决实际问题,以猫屎咖啡的购买为例,逐步实现将购买斤数换算成人民币金额的功能。文章强调了与AI协作时的三个要点:1) 去除无关信息,聚焦目标;2) 将复杂任务拆解为小步骤,逐步完成;3) 巩固已有成果后再推进。最终代码实现了输入验证、单位转换和价格计算,并保留两位小数。总结指出,在AI时代,人类负责明确目标、拆分任务和确认结果,AI则负责生成代码、解释含义和提供优化建议,编程不会被取代,而是会更广泛地融入各领域。
82 28
|
1月前
|
Python
[oeasy]python074_ai辅助编程_水果程序_fruits_apple_banana_加法_python之禅
本文回顾了从模块导入变量和函数的方法,并通过一个求和程序实例,讲解了Python中输入处理、类型转换及异常处理的应用。重点分析了“明了胜于晦涩”(Explicit is better than implicit)的Python之禅理念,强调代码应清晰明确。最后总结了加法运算程序的实现过程,并预告后续内容将深入探讨变量类型的隐式与显式问题。附有相关资源链接供进一步学习。
38 4
|
1月前
|
设计模式 机器学习/深度学习 前端开发
Python 高级编程与实战:深入理解设计模式与软件架构
本文深入探讨了Python中的设计模式与软件架构,涵盖单例、工厂、观察者模式及MVC、微服务架构,并通过实战项目如插件系统和Web应用帮助读者掌握这些技术。文章提供了代码示例,便于理解和实践。最后推荐了进一步学习的资源,助力提升Python编程技能。

热门文章

最新文章