【Python机器学习】多项式回归、K近邻KNN回归的讲解及实战(图文解释 附源码)

简介: 【Python机器学习】多项式回归、K近邻KNN回归的讲解及实战(图文解释 附源码)

需要源码请点赞关注收藏后评论区留言私信~~~

多项式回归

非线性回归是用一条曲线或者曲面去逼近原始样本在空间中的分布,它“贴近”原始分布的能力一般较线性回归更强。

多项式是由称为不定元的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。

多项式回归(Polynomial Regression)是研究一个因变量与一个或多个自变量间多项式关系的回归分析方法。多项式回归模型是非线性回归模型中的一种。

由泰勒级数可知,在某点附近,如果函数n次可导,那么它可以用一个n次的多项式来近似。

假设确定了用一个一元n次多项式来拟合训练样本集,模型可表示如下:

那么多项式回归的任务就是估计出各θ值。

包括多项式回归问题在内的一些非线性回归问题可以转化为线性回归问题来求解,具体思路是将式中的每一项看作一个独立的特征(或者说生成新的特征),令y_1=x,y_2=x^2,…,y_n=x^n,那么一个一元n次多项式θ_0+θ_1x+θ_2x^2+…+θ_nx^n就变成了一个n元一次多项式θ_0+θ_1y_1+θ_2y_2+…+θ_ny_n,就可以采用线性回归的方法来求解。

示例:先拟定一个一元三次多项式作为目标函数,然后再加上一些噪声产生样本集,再用转化的线性回归模型来完成拟合,最后对测试集进行预测。

测试效果如下

部分代码如下

def myfun(x):
    input:x(float):自变量
    output:函数值'''
    return 10 + 5 * x + 4 * x**2 + 6 * x**3
import numpy as np
x = np.linspace(-3,3, 7)
>>> array([-3., -2., -1.,  0.,  1.,  2.,  3.])
x_p = (np.linspace(-2.5, 2.5, 6)).reshape(-1,1) # 预测点
import random
y = myfun(x) + np.random.random(size=len(x)) * 100 - 50
y
>>> array([-136.49570384,   -8.98763646,  -23.33764477,   50.97656894,
         20.19888523,   35.76052266,  199.48378741])
from sklearn.preprocessing import PolynomialFeatures
featurizer_3 = PolynomialFeatures(degree=3)
x_3 = featurizer_3.fit_transform(x)
x_3
>>>array([[  1.,  -3.,   9., -27.],
       [  1.,  -2.,   4.,  -8.],
       [  1.,  -1.,   1.,  -1.],
       [  1.,   0.,   0.,   0.],
       [  1.,   1.,   1.,   1.],
       [  1.,   2.,   4.,   8.],
       [  1.,   3.,   9.,  27.]])

局部回归

前述的回归模型,假设所有样本之间都存在相同程度的影响,这类模型称为全局模型。在机器学习中,还有另一种思想:认为相近的样本相互影响更大,离的远的样本相互影响很小,甚至可以不计。这种以“远亲不如近邻”思想为指导得到的模型称为局部模型。局部思想在聚类、回归、分类等机器学习任务中都有应用,聚类算法中的DBSCAN算法就是以这种思想为指导的模型。

用于回归的局部模型有局部加权线性回归模型、K近邻模型和树回归模型等。

局部加权线性回归(Locally Weighted Linear Regression,LWLR)模型根据训练样本点与预测点的远近设立权重,离预测点越近的点的权重就越大。局部加权线性回归方法不形成固定的模型,对每一个新的预测点,都需要计算每个样本点的权值,在样本集非常大的时候,预测效率较低。

K近邻法(K-nearest neighbor, KNN)

是一种简单而基本的机器学习方法,可用于求解分类和回归问题。

应用K近邻法求解回归问题,需要先指定三个要素:样本间距离度量方法d(∙)、邻居样本个数k和根据k个邻居样本计算标签值方法v(∙)。

设样本集为S={s_1,s_2,…,s_m}包含m个样本,每个样本s_i=(x_i,y_i)包括一个实例x_i和一个实数标签值y_i。测试样本记为x。

K近邻法用于回归分为两步:

1)根据d(∙),从S中找出k个距离x最近的样本,即得到x的邻域N_k(x);

2)计算v(N_k(x))得到x的标签值

d(∙)常用欧氏距离。v(∙)常用求均值函数、线性回归模型和局部加权线性回归模型。

应用K近邻法求解分类问题,只需将三要素中的计算标签值的方法改为计算分类标签的方法即可。计算分类标签的方法常采用投票法。

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
4月前
|
SQL 关系型数据库 数据库
Python SQLAlchemy模块:从入门到实战的数据库操作指南
免费提供Python+PyCharm编程环境,结合SQLAlchemy ORM框架详解数据库开发。涵盖连接配置、模型定义、CRUD操作、事务控制及Alembic迁移工具,以电商订单系统为例,深入讲解高并发场景下的性能优化与最佳实践,助你高效构建数据驱动应用。
574 7
|
4月前
|
数据采集 Web App开发 数据安全/隐私保护
实战:Python爬虫如何模拟登录与维持会话状态
实战:Python爬虫如何模拟登录与维持会话状态
|
4月前
|
传感器 运维 前端开发
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
本文解析异常(anomaly)与新颖性(novelty)检测的本质差异,结合distfit库演示基于概率密度拟合的单变量无监督异常检测方法,涵盖全局、上下文与集体离群值识别,助力构建高可解释性模型。
428 10
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
|
4月前
|
数据采集 监控 数据库
Python异步编程实战:爬虫案例
🌟 蒋星熠Jaxonic,代码为舟的星际旅人。从回调地狱到async/await协程天堂,亲历Python异步编程演进。分享高性能爬虫、数据库异步操作、限流监控等实战经验,助你驾驭并发,在二进制星河中谱写极客诗篇。
Python异步编程实战:爬虫案例
|
4月前
|
Cloud Native 算法 API
Python API接口实战指南:从入门到精通
🌟蒋星熠Jaxonic,技术宇宙的星际旅人。深耕API开发,以Python为舟,探索RESTful、GraphQL等接口奥秘。擅长requests、aiohttp实战,专注性能优化与架构设计,用代码连接万物,谱写极客诗篇。
Python API接口实战指南:从入门到精通
|
4月前
|
存储 分布式计算 测试技术
Python学习之旅:从基础到实战第三章
总体来说,第三章是Python学习路程中的一个重要里程碑,它不仅加深了对基础概念的理解,还引入了更多高级特性,为后续的深入学习和实际应用打下坚实的基础。通过这一章的学习,读者应该能够更好地理解Python编程的核心概念,并准备好应对更复杂的编程挑战。
165 12
|
4月前
|
存储 数据采集 监控
Python文件操作全攻略:从基础到高级实战
本文系统讲解Python文件操作核心技巧,涵盖基础读写、指针控制、异常处理及大文件分块处理等实战场景。结合日志分析、CSV清洗等案例,助你高效掌握文本与二进制文件处理,提升程序健壮性与开发效率。(238字)
455 1
|
4月前
|
存储 Java 调度
Python定时任务实战:APScheduler从入门到精通
APScheduler是Python强大的定时任务框架,通过触发器、执行器、任务存储和调度器四大组件,灵活实现各类周期性任务。支持内存、数据库、Redis等持久化存储,适用于Web集成、数据抓取、邮件发送等场景,解决传统sleep循环的诸多缺陷,助力构建稳定可靠的自动化系统。(238字)
857 1
|
4月前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
453 0
|
4月前
|
机器学习/深度学习 监控 数据挖掘
Python 高效清理 Excel 空白行列:从原理到实战
本文介绍如何使用Python的openpyxl库自动清理Excel中的空白行列。通过代码实现高效识别并删除无数据的行与列,解决文件臃肿、读取错误等问题,提升数据处理效率与准确性,适用于各类批量Excel清理任务。
515 0

热门文章

最新文章

推荐镜像

更多