【Python机器学习】层次聚类AGNES、二分K-Means算法的讲解及实战演示(图文解释 附源码)

简介: 【Python机器学习】层次聚类AGNES、二分K-Means算法的讲解及实战演示(图文解释 附源码)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

层次聚类

在聚类算法中,有一类研究执行过程的算法,它们以其他聚类算法为基础,通过不同的运用方式试图达到提高效率,避免局部最优等目的,这类算法主要有网格聚类和层次聚类算法

网格聚类算法强调的是分批统一处理以提高效率,具体的做法是将特征空间划分为若干个网格,网格内的所有样本看成一个单元进行处理,网格聚类算法要与划分聚类或密度聚类算法结合使用,网格聚类算法处理的单元只与网格数量有关,与样本数量无关,因此在数据量大时,网格聚类算法可以极大地提高效率

层次(Hierarchical)聚类算法强调的是聚类执行的过程,分为自底向上的凝聚方法和自顶向下的分裂方法两种。

凝聚方法是先将每一个样本点当成一个簇,然后根据距离和密度等度量准则进行逐步合并。

分裂方法是先将所有样本点放在一个簇内,然后再逐步分解。

前者的典型算法有AGNES算法,后者的典型算法有二分k-means算法。

1:二分 k-means算法

二分k-means算法先将所有点看成一个簇,然后将该簇一分为二,之后选择其中一个簇继续分裂。选择哪一个簇进行分裂,取决于对其进行的分裂是否可以最大程度降低SSE值。如此分裂下去,直到达到指定的簇数目k为止

效果展示如下

部分代码如下 下面是分裂主循环代码

while len(SSE) < n_clusters:
    max_changed_SSE = 0
    tag = -1
    for i in range(len(SSE)): # 对每个簇进行试分簇,计算SSE的减少量
        estimator = KMeans(init='k-means++', n_clusters=2, n_init=n_init).fit(samples[i]) # 二分簇
        changed_SSE = SSE[i] - estimator.inertia_
        print(estimator.inertia_, ' - ', changed_SSE)
        if changed_SSE > max_changed_SSE: # 比较SSE值是不是减少了
            max_changed_SSE = changed_SSE
            tag = i
    # 正式分簇
    estimator = KMeans(init='k-means++', n_clusters=2, n_init=n_init).fit(samples[tag])
    indexs0 = np.where(estimator.labels_ == 0) # 标签为0的样本在数组中的下标
    cluster0 = samples[tag][indexs0] # 从簇中分出标签为0的新簇
    indexs1 = np.where(estimator.labels_ == 1)
    cluster1 = samples[tag][indexs1] # 从簇中分出标签为1的新簇
    del samples[tag]
    samples.append(cluster0)
    samples.append(cluster1)
    del SSE[tag]
    estimator = KMeans(init='k-means++', n_clusters=1, n_init=n_init).fit(cluster0)
    SSE.append(estimator.inertia_) # 新簇的SSE值
    estimator = KMeans(init='k-means++', n_clusters=1, n_init=n_init).fit(cluster1)
    SSE.append(estimator.inertia_)

2:AGNES算法

AGNES(AGglomerative NESting)算法先将每个样本点看成一个簇,然后根据簇与簇之间的距离度量将最近的两个簇合并,一直重复合并到指定的簇数目k为止。

代码参数如下所示

class sklearn.cluster.AgglomerativeClustering(n_clusters=2, affinity=’euclidean’, memory=None, connectivity=None, compute_full_tree=’auto’, linkage=’ward’, pooling_func=’deprecated’, distance_threshold=None)

n_clusters是指定的分簇数

linkage是簇距离度量方法,支持ward、complete、average和single四种方法。complete、average和single分别对应簇最大距离、簇平均距离和簇最小距离。

Ward方法与其它方法不一样,它不是按距离合并簇,而是合并使得偏差(样本点与簇中心的差值)平方和增加最小的两个簇。它先要对所有簇进行两两试合并,并计算偏差平方和的增加值,然后取增加最小的两个簇进行合并。

效果展示如下

部分代码如下

# Set up cluster parameters
plt.figure(figsize=(9 * 1.3 + 2, 14.5))
plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05,
                    hspace=.01)
plot_num = 1
default_base = {'n_neighbors': 10,
                'n_clusters': 3}
datasets = [
    (noisy_circles, {'n_clusters': 2}),
    (noisy_moons, {'n_clusters': 2}),
    (varied, {'n_neighbors': 2}),
    (aniso, {'n_neighbors': 2}),
    (blobs, {}),
    (no_structure, {})]
for i_dataset, (dataset, algo_params) in enumerate(datasets):
    # update parameters with dataset-specific values
    params = default_base.copy()
    params.update(algo_params)
    X, y = dataset
    # normalize dataset for easier parameter selection
    X = StandardScaler().fit_transform(X)
    # ============
    # Create cluster objects
    # ============
    ward = cluster.AgglomerativeClustering(
        n_clusters=params['n_clusters'], linkage='ward')
    complete = cluster.AgglomerativeClustering(
        n_clusters=params['n_clusters'], linkage='complete')
    average = cluster.AgglomerativeClustering(
        n_clusters=params['n_clusters'], linkage='average')
    single = cluster.AgglomerativeClustering(
        n_clusters=params['n_clusters'], linkage='single')
    clustering_algorithms = (
        ('Single Linkage', single),
        ('Average Linkage', average),
        ('Complete Linkage', complete),
        ('Ward Linkage', ward),
    )
    for name, algorithm in clustering_algorithms:
        t0 = time.time()
        # catch warnings related to kneighbors_graph
        with warnings.catch_warnings():
            warnings.filterwarnings(
                "ignore",
                message="the number of connected components of the " +
                "connectivity matrix is [0-9]{1,2}" +
                " > 1. Completing it to avoid stopping the tree early.",
                category=UserWarning)
            algorithm.fit(X)
        t1 = time.time()
        if hasattr(algorithm, 'labels_'):
            y_pred = algorithm.labels_.astype(int)
        else:
            y_pred = algorithm.predict(X)
        plt.subplot(len(datasets), len(clustering_algorithms), plot_num)
        if i_dataset == 0:
            plt.title(name, size=18)
        colors = np.array(list(islice(cycle(['#377eb8', '#ff7f00', '#4daf4a',
                                             '#f781bf', '#a65628', '#984ea3',
                                             '#999999', '#e41a1c', '#dede00']),
                                      int(max(y_pred) + 1))))
        plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[y_pred])
        plt.xlim(-2.5, 2.5)
        plt.ylim(-2.5, 2.5)
        plt.xticks(())
        plt.yticks(())
        plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'),
                 transform=plt.gca().transAxes, size=15,
                 horizontalalignment='right')
        plot_num += 1
plt.show()

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
8月前
|
机器学习/深度学习 算法 Python
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
332 7
|
6月前
|
机器学习/深度学习 人工智能 算法
Scikit-learn:Python机器学习的瑞士军刀
想要快速入门机器学习但被复杂算法吓退?本文详解Scikit-learn如何让您无需深厚数学背景也能构建强大AI模型。从数据预处理到模型评估,从垃圾邮件过滤到信用风险评估,通过实用案例和直观图表,带您掌握这把Python机器学习的'瑞士军刀'。无论您是AI新手还是经验丰富的数据科学家,都能从中获取将理论转化为实际应用的关键技巧。了解Scikit-learn与大语言模型的最新集成方式,抢先掌握机器学习的未来发展方向!
986 12
Scikit-learn:Python机器学习的瑞士军刀
|
8月前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
8月前
|
机器学习/深度学习 数据可视化 算法
Python 高级编程与实战:深入理解数据科学与机器学习
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化和调试技巧。本文将深入探讨 Python 在数据科学和机器学习中的应用,并通过实战项目帮助你掌握这些技术。
|
1月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
190 0
|
1月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
143 2
|
2月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
194 3
|
2月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
127 6
|
1月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
137 8
|
1月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
146 8

热门文章

最新文章

推荐镜像

更多
下一篇
oss云网关配置