【Python机器学习】PCA降维算法讲解及二维、高维数据可视化降维实战(附源码 超详细)

简介: 【Python机器学习】PCA降维算法讲解及二维、高维数据可视化降维实战(附源码 超详细)

需要全部代码请点赞关注收藏后评论区留言私信~~~

维数灾难

维数灾难是指在涉及到向量计算的问题中,当维数增加时,空间的体积增长得很快,使得可用的数据在空间中的分布变得稀疏,向量的计算量呈指数倍增长的一种现象。维数灾难涉及数值分析、抽样、组合、机器学习、数据挖掘和数据库等诸多领域。

降维不仅可以减少样本的特征数量,还可以用来解决特征冗余(是指不同特征有高度相关性)等其他数据预处理问题。可视化并探索高维数据集也是它的一个重要应用。

降维算法是专门用于降维的算法,可以分为线性和非线性的,线性的降维算法是基于线性变换来降维,主要有奇异值分解,主成分分析等算法,主成分分析是最常用的降维算法,下面我们将重点讨论它

主成分分析PCA

1:二维数据降维

顾名思义,主成分分析是指找出主要成分来代替原始数据,用二维平面上的例子来简要说明其过程

在二维平面上有x_1,x_2,x_3,x_4四个点,坐标分别是(4,2)、(0,2)、(-2,0)和(-2,-4),它们满足所谓中心化要求,即∑_i=1^4▒x_i=0。对不满足中心化要求的点,可通过减所有点的均值来满足该要求

降维必定会带来误差,如何使总体误差最小是降维算法追求的目标。用所有误差向量的模的平方之和作为损失函数来衡量降维带来的误差(类似于误差平方和损失函数SSE)。

现在要将四个点从二维降到一维,一个很自然的想法是直接去掉每个点的一个坐标,试着同步旋转X值和Y值,使得去掉Y轴上的坐标带来的损失函数最小。

只旋转不降维的输出结果如下

代码如下

from sklearn.decomposition import PCA
pca = PCA(n_components=2) # 只旋转不降维
pca.fit(x)
print("新的轴向量:")
print(pca.components_)
print("各维度投影方差占比分布:")
print(pca.explained_variance_ratio_)
print("各点在新轴上的投影:")
print(pca.transform(x))

降到一维的结果如下

代码如下

pca = PCA(n_components=1) # 降到一维
pca.fit(x)
print("新的轴向量:")
print(pca.components_)
print("各维度投影方差占比分布:")
print(pca.explained_variance_ratio_)
print("各点在新轴上的投影:")
print(pca.transform(x))

2:三维数据可视化降维

我们生成三维空间中分布的点,然后降到二维

在三维空间中生成四个簇,并查看它们的分布如下

接下来我们分布查看它们在三个面上的投影 可以看出每个面上的投影都有两个簇重叠的情况

接着用PCA对它们进行降维,共进行了三次,第一次降到一个二维的平面上,可见可以较好的分开为四个簇,第二次要求保留百分之九十的精度,第三次要求保留百分之九十九精度,此时不能降低维数,否则就达不到该要求

结果如下

部分代码如下 需要全部代码请点赞关注收藏后评论区留言私信~~~

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.datasets import make_blobs
X, _ = make_blobs(n_samples=10000, n_features=3, centers=[[0,0,0], [1,1,0.5], [3,3,3], [2,5,10]], cluster_std=[0.3, 0.1, 0.7, 0.5])
fig = plt.figure()
ax = Axes3D(fig)
plt.scatter(X[:, 0], X[:, 1], X[:, 2], marker='+')

创作不易 觉得有帮助请点赞关注收藏~~

相关文章
|
18天前
|
SQL 关系型数据库 数据库
Python SQLAlchemy模块:从入门到实战的数据库操作指南
免费提供Python+PyCharm编程环境,结合SQLAlchemy ORM框架详解数据库开发。涵盖连接配置、模型定义、CRUD操作、事务控制及Alembic迁移工具,以电商订单系统为例,深入讲解高并发场景下的性能优化与最佳实践,助你高效构建数据驱动应用。
182 7
|
22天前
|
数据采集 Web App开发 数据安全/隐私保护
实战:Python爬虫如何模拟登录与维持会话状态
实战:Python爬虫如何模拟登录与维持会话状态
|
1月前
|
传感器 运维 前端开发
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
本文解析异常(anomaly)与新颖性(novelty)检测的本质差异,结合distfit库演示基于概率密度拟合的单变量无监督异常检测方法,涵盖全局、上下文与集体离群值识别,助力构建高可解释性模型。
257 10
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
|
29天前
|
存储 分布式计算 测试技术
Python学习之旅:从基础到实战第三章
总体来说,第三章是Python学习路程中的一个重要里程碑,它不仅加深了对基础概念的理解,还引入了更多高级特性,为后续的深入学习和实际应用打下坚实的基础。通过这一章的学习,读者应该能够更好地理解Python编程的核心概念,并准备好应对更复杂的编程挑战。
79 12
|
25天前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
29天前
|
存储 数据采集 监控
Python文件操作全攻略:从基础到高级实战
本文系统讲解Python文件操作核心技巧,涵盖基础读写、指针控制、异常处理及大文件分块处理等实战场景。结合日志分析、CSV清洗等案例,助你高效掌握文本与二进制文件处理,提升程序健壮性与开发效率。(238字)
193 1
|
1月前
|
存储 Java 调度
Python定时任务实战:APScheduler从入门到精通
APScheduler是Python强大的定时任务框架,通过触发器、执行器、任务存储和调度器四大组件,灵活实现各类周期性任务。支持内存、数据库、Redis等持久化存储,适用于Web集成、数据抓取、邮件发送等场景,解决传统sleep循环的诸多缺陷,助力构建稳定可靠的自动化系统。(238字)
341 1
|
19天前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
171 0
|
26天前
|
机器学习/深度学习 监控 数据挖掘
Python 高效清理 Excel 空白行列:从原理到实战
本文介绍如何使用Python的openpyxl库自动清理Excel中的空白行列。通过代码实现高效识别并删除无数据的行与列,解决文件臃肿、读取错误等问题,提升数据处理效率与准确性,适用于各类批量Excel清理任务。
280 0
|
机器学习/深度学习 算法 数据可视化
吴恩达《Machine Learning》精炼笔记 9:PCA 及其 Python 实现
吴恩达《Machine Learning》精炼笔记 9:PCA 及其 Python 实现
419 0
吴恩达《Machine Learning》精炼笔记 9:PCA 及其 Python 实现

推荐镜像

更多