云原生|kubernetes|搭建部署一个稳定高效的EFK日志系统

简介: 云原生|kubernetes|搭建部署一个稳定高效的EFK日志系统

前言

对于任何基础设施或后端服务系统,日志都是极其重要的。对于受Google内部容器管理系统Borg启发而催生出的Kubernetes项目来说,自然少不了对Logging的支持。

efk就是目前比较受欢迎的日志管理系统。kubernetes可以实现efk的快速部署和使用,通过statefulset控制器部署elasticsearch组件,用来存储日志数据,还可通过volumenclaimtemplate动态生成pv实现es数据的持久化。通过deployment部署kibana组件,实现日志的可视化管理。通过daemonset控制器部署fluentd组件,来收集各节点和k8s集群的日志。

实践流程

K8s中比较流行的日志收集解决方案是Elasticsearch、Fluentd和Kibana(EFK)技术栈,也是官方推荐的一种方案。

本次实践主要就是配置启动一个可扩展的 Elasticsearch 集群,然后在Kubernetes集群中创建一个Kibana应用,最后通过DaemonSet来运行Fluentd,以便它在每个Kubernetes工作节点上都可以运行一个 Pod,此pod挂载本地的docker日志目录到容器内部(k8s集群的日志都在这个目录下),fluentd将日志收集处理后推送到elasticsearch,kibana进行一个完整的展示。

EFK 利用部署在每个节点上的 Fluentd 采集 Kubernetes 节点服务器的 /var/log/var/lib/docker/container 两个目录下的日志,然后传到 Elasticsearch 中。最后,用户通过访问 Kibana 来查询日志(如果docker没有使用默认的目录/var/lib/docker/container,请根据实际情况更改)。

具体过程如下:

  1. 创建 Fluentd 并且将 Kubernetes 节点服务器 log 目录挂载进容器。
  2. Fluentd 采集节点服务器 log 目录下的 containers 里面的日志文件。
  3. Fluentd 将收集的日志转换成 JSON 格式。
  4. Fluentd 利用 Exception Plugin 检测日志是否为容器抛出的异常日志,如果是就将异常栈的多行日志合并。
  5. Fluentd 将换行多行日志 JSON 合并。
  6. Fluentd 使用 Kubernetes Metadata Plugin 检测出 Kubernetes 的 Metadata 数据进行过滤,如 Namespace、Pod Name 等。
  7. Fluentd 使用 ElasticSearch Plugin 将整理完的 JSON 日志输出到 ElasticSearch 中。
  8. ElasticSearch 建立对应索引,持久化日志信息。
  9. Kibana 检索 ElasticSearch 中 Kubernetes 日志相关信息进行展示。

相关组件介绍:

  • Elasticsearch

Elasticsearch 是一个实时的、分布式的可扩展的搜索引擎,允许进行全文、结构化搜索,它通常用于索引和搜索大量日志数据,也可用于搜索许多不同类型的文档。

  • Kibana

Elasticsearch 通常与 Kibana 一起部署,Kibana 是 Elasticsearch 的一个功能强大的数据可视化 Dashboard,Kibana 允许你通过 web 界面来浏览 Elasticsearch 日志数据。

  • Fluentd

Fluentd是一个流行的开源数据收集器,我们将在 Kubernetes 集群节点上安装 Fluentd,通过获取容器日志文件、过滤和转换日志数据,然后将数据传递到 Elasticsearch 集群,在该集群中对其进行索引和存储。

正式的部署步骤:

一,

关于volume存储插件的问题

由于elasticsearch这个组件是计划部署为一个可扩展的集群,因此,使用了volumenclaimtemplate模板动态生成pv,而volumenclaimtemplate必须要有一个可用的StorageClass,因此,部署一个nfs-client-provisioner插件,然后借由此插件实现一个可用的StorageClass。因前面写过关于此类部署的文章,就不在此重复了,以免本文篇幅过长,下面是部署方案:

kubernetes学习之持久化存储StorageClass(4)_晚风_END的博客-CSDN博客_kubernetes中用于持久化存储的组件

二,

关于kubernetes内部使用的DNS---COREDNS的功能

云原生|kubernetes|kubernetes-1.18 二进制安装教程单master(其它的版本也基本一样)_晚风_END的博客-CSDN博客_二进制安装kubelet 这个里面关于coredns做了一个比较详细的介绍,不太会的可以看这里部署coredns,以保证es集群的成功部署。

测试coredns的功能是否正常:

kubectl run -it --image busybox:1.28.3 -n web  dns-test --restart=Never --rm

测试了解析域名 kubernetes,kubernetes-default,baidu.com ,elasticsearch.kube-logging.svc.cluster.local 这么几个域名(elasticsearch-cluster我已经部署好才测试成功了elasticsearch.kube-logging.svc.cluster.local 这个域名啦),并查看了容器内的dns相关文件。

总之,一句话,要保证coredns是可用的,正常的,否则es集群是部署不好的哦。

DNS测试用例:

/ # nslookup kubernetes
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local
Name:      kubernetes
Address 1: 10.0.0.1 kubernetes.default.svc.cluster.local
/ # nslookup kubernetes.default
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local
Name:      kubernetes.default
Address 1: 10.0.0.1 kubernetes.default.svc.cluster.local
/ # nslookup baidu.com
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local
Name:      baidu.com
Address 1: 110.242.68.66
Address 2: 39.156.66.10
/ # nslookup elasticsearch.kube-logging.svc.cluster.local
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local
Name:      elasticsearch.kube-logging.svc.cluster.local
Address 1: 10.244.1.20 es-cluster-1.elasticsearch.kube-logging.svc.cluster.local
Address 2: 10.244.1.21 es-cluster-0.elasticsearch.kube-logging.svc.cluster.local
Address 3: 10.244.2.20 es-cluster-2.elasticsearch.kube-logging.svc.cluster.local
/ # cat /etc/resolv.conf 
nameserver 10.0.0.2
search web.svc.cluster.local svc.cluster.local cluster.local localdomain default.svc.cluster.local
options ndots:5

三,

es集群的部署

建立相关的namespace:

cat << EOF > es-ns.yaml
apiVersion: v1
kind: Namespace
metadata:
  name: kube-logging
EOF

headless service

es-svc.yaml里的headless service:

使用无头service的原因是,headless service不具备负载均衡也没有IP,而headless service可以提供一个稳定的域名elasticsearch.kube-logging.svc.cluster.local(service的名字是elasticsearch嘛),而es的部署方式是StateFulSet,是有三个pod的,也就是DNS的测试内容

在kube-logging名称空间定义了一个名为 elasticsearch 的 Service服务,带有app=elasticsearch标签,当我们将 ElasticsearchStatefulSet 与此服务关联时,服务将返回带有标签app=elasticsearch的 Elasticsearch Pods的DNS A记录。最后,我们分别定义端口9200、9300,分别用于与 REST API 交互,以及用于节点间通信(9300是节点之间es集群选举通信用的)

DNS测试用例:

/ # nslookup elasticsearch.kube-logging.svc.cluster.local
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local
Name:      elasticsearch.kube-logging.svc.cluster.local
Address 1: 10.244.1.20 es-cluster-1.elasticsearch.kube-logging.svc.cluster.local
Address 2: 10.244.1.21 es-cluster-0.elasticsearch.kube-logging.svc.cluster.local
Address 3: 10.244.2.20 es-cluster-2.elasticsearch.kube-logging.svc.cluster.local

es-svc.yaml 集群的service部署清单:  

cat << EOF >es-svc.yaml
kind: Service
apiVersion: v1
metadata:
  name: elasticsearch
  namespace: kube-logging
  labels:
    app: elasticsearch
spec:
  selector:
    app: elasticsearch
  clusterIP: None
  ports:
    - port: 9200
      name: rest
    - port: 9300
      name: inter-node
EOF

es-sts-deploy.yaml 部署清单详解

【整体关键字段介绍】

在kube-logging的名称空间中定义了一个es-cluster的StatefulSet。容器的名字是elasticsearch,镜像是elasticsearch:7.8.0。使用resources字段来指定容器需要保证至少有0.1个vCPU,并且容器最多可以使用1个vCPU(这在执行初始的大量提取或处理负载高峰时限制了Pod的资源使用)。了解有关资源请求和限制,可参考https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/。暴漏了9200和9300两个端口,名称要和上面定义的 Service 保持一致,通过volumeMount声明了数据持久化目录,定义了一个data数据卷,通过volumeMount把它挂载到容器里的/usr/share/elasticsearch/data目录。我们将在以后的YAML块中为此StatefulSet定义VolumeClaims。

然后,我们使用serviceName 字段与我们之前创建的ElasticSearch服务相关联。这样可以确保可以使用以下DNS地址访问StatefulSet中的每个Pod:,es-cluster-[0,1,2].elasticsearch.kube-logging.svc.cluster.local,其中[0,1,2]与Pod分配的序号数相对应。我们指定3个replicas(3个Pod副本),将matchLabels selector 设置为app: elasticseach,然后在该.spec.template.metadata中指定pod需要的镜像。该.spec.selector.matchLabels和.spec.template.metadata.labels字段必须匹配。

【部分关键变量介绍】

a,cluster.name

Elasticsearch     集群的名称,我们这里是 k8s-logs,此变量非常重要。

b,node.name

节点的名称,通过metadata.name来获取。这将解析为 es-cluster-[0,1,2],取决于节点的指定顺序。

c,discovery.zen.ping.unicast.hosts

此字段用于设置在Elasticsearch集群中节点相互连接的发现方法。

我们使用 unicastdiscovery方式,它为我们的集群指定了一个静态主机列表。

由于我们之前配置的无头服务,我们的 Pod 具有唯一的DNS域es-cluster-[0,1,2].elasticsearch.logging.svc.cluster.local,

因此我们相应地设置此变量。由于都在同一个 namespace 下面,所以我们可以将其缩短为es-cluster-[0,1,2]

d,discovery.zen.minimum_master_nodes

我们将其设置为(N/2) + 1,N是我们的群集中符合主节点的节点的数量。

我们有3个Elasticsearch 节点,因此我们将此值设置为2(向下舍入到最接近的整数)。

e,ES_JAVA_OPTS

这里我们设置为-Xms512m -Xmx512m,告诉JVM使用512MB的最小和最大堆。

你应该根据群集的资源可用性和需求调整这些参数。

f,

initcontainer内容

. . .

     initContainers:

     - name: fix-permissions

       image: busybox

       command: ["sh", "-c", "chown -R 1000:1000 /usr/share/elasticsearch/data"]

       securityContext:

         privileged: true

       volumeMounts:

       - name: data

         mountPath: /usr/share/elasticsearch/data

     - name: increase-vm-max-map

       image: busybox

       command: ["sysctl", "-w", "vm.max_map_count=262144"]

       securityContext:

         privileged: true

     - name: increase-fd-ulimit

       image: busybox

       command: ["sh", "-c", "ulimit -n 65536"]

       securityContext:

         privileged: true

这里我们定义了几个在主应用程序之前运行的Init 容器,这些初始容器按照定义的顺序依次执行,执行完成后才会启动主应用容器。第一个名为 fix-permissions 的容器用来运行 chown 命令,将 Elasticsearch 数据目录的用户和组更改为1000:1000(Elasticsearch 用户的 UID)。因为默认情况下,Kubernetes 用 root 用户挂载数据目录,这会使得 Elasticsearch 无法方法该数据目录,可以参考 Elasticsearch 生产中的一些默认注意事项相关文档说明:https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html#_notes_for_production_use_and_defaults

第二个名为increase-vm-max-map 的容器用来增加操作系统对mmap计数的限制,默认情况下该值可能太低,导致内存不足的错误,要了解更多关于该设置的信息,可以查看 Elasticsearch 官方文档说明:https://www.elastic.co/guide/en/elasticsearch/reference/current/vm-max-map-count.html。最后一个初始化容器是用来执行ulimit命令增加打开文件描述符的最大数量的。

g,

在 StatefulSet 中,使用volumeClaimTemplates来定义volume 模板即可:

. . .

 volumeClaimTemplates:

 - metadata:

     name: data

     labels:

       app: elasticsearch

   spec:

     accessModes: [ "ReadWriteOnce" ]

     storageClassName: managed-nfs-storage

     resources:

       requests:

         storage: 10Gi

我们这里使用 volumeClaimTemplates 来定义持久化模板,Kubernetes 会使用它为 Pod 创建 PersistentVolume,设置访问模式为ReadWriteOnce,这意味着它只能被 mount到单个节点上进行读写,然后最重要的是使用了一个名为do-block-storage的 StorageClass 对象,所以我们需要提前创建该对象,我们这里使用的 NFS 作为存储后端,所以需要安装一个对应的 nfs-client-provisioner驱动。

es-sts-deploy.yaml  集群部署清单:

cat << EOF > es-sts-deploy.yaml
apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: es-cluster
  namespace: kube-logging
spec:
  serviceName: elasticsearch
  replicas: 3
  selector:
    matchLabels:
      app: elasticsearch
  template:
    metadata:
      labels:
        app: elasticsearch
    spec:
      containers:
      - name: elasticsearch
        image: elasticsearch:7.8.0
        imagePullPolicy: IfNotPresent
        resources:
            limits:
              cpu: 1000m
            requests:
              cpu: 100m
        ports:
        - containerPort: 9200
          name: rest
          protocol: TCP
        - containerPort: 9300
          name: inter-node
          protocol: TCP
        volumeMounts:
        - name: data
          mountPath: /usr/share/elasticsearch/data
        env:
          - name: cluster.name
            value: k8s-logs
          - name: node.name
            valueFrom:
              fieldRef:
                fieldPath: metadata.name
          - name: discovery.seed_hosts
            value: "es-cluster-0.elasticsearch,es-cluster-1.elasticsearch,es-cluster-2.elasticsearch"
          - name: cluster.initial_master_nodes
            value: "es-cluster-0,es-cluster-1,es-cluster-2"
          - name: ES_JAVA_OPTS
            value: "-Xms512m -Xmx512m"
      initContainers:
      - name: fix-permissions
        image: busybox
        imagePullPolicy: IfNotPresent
        command: ["sh", "-c", "chown -R 1000:1000 /usr/share/elasticsearch/data"]
        securityContext:
          privileged: true
        volumeMounts:
        - name: data
          mountPath: /usr/share/elasticsearch/data
      - name: increase-vm-max-map
        image: busybox
        imagePullPolicy: IfNotPresent
        command: ["sysctl", "-w", "vm.max_map_count=262144"]
        securityContext:
          privileged: true
      - name: increase-fd-ulimit
        image: busybox
        imagePullPolicy: IfNotPresent
        command: ["sh", "-c", "ulimit -n 65536"]
        securityContext:
          privileged: true
  volumeClaimTemplates:
  - metadata:
      name: data
      labels:
        app: elasticsearch
    spec:
      accessModes: [ "ReadWriteOnce" ]
      storageClassName: managed-nfs-storage
      resources:
        requests:
          storage: 10Gi
EOF




OK,稍等几分钟后,es集群基本就部署好了,看看pod和svc是否正常吧:

[root@k8s-master ~]# k get po,svc -n kube-logging
NAME               READY   STATUS    RESTARTS   AGE
pod/es-cluster-0   1/1     Running   0          6m44s
pod/es-cluster-1   1/1     Running   0          6m37s
pod/es-cluster-2   1/1     Running   0          6m30s
NAME                    TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)             AGE
service/elasticsearch   ClusterIP   None         <none>        9200/TCP,9300/TCP   3m51s

四,

kibana的部署

这个没什么好说的,干就完了,需要注意的是,镜像和上面的es版本一致,都是7.8.0哦。

总共两个清单文件,一个是service,该service是暴露节点端口的,如果有安装ingress,那么,此service可以设置为headless service不用设置为NodePort。

第二个文件是部署pod的文件,其中的value: http://elasticsearch:9200 是指的headless service的9200端口,假如啊,注意我这是假如,headless service名字是myes,那么,这里value就应该是 http://myes:9200,总之,此环境变量把kibana和elasticsearch集群联系起来了。

kibana-svc.yaml

cat << EOF > kibana-svc.yaml
apiVersion: v1
kind: Service
metadata:
  name: kibana
  namespace: kube-logging
  labels:
    app: kibana
spec:
  type: NodePort
  ports:
  - port: 5601
  selector:
    app: kibana
EOF

kibana-deploy.yaml

cat << EOF > kibana-deploy.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: kibana
  namespace: kube-logging
  labels:
    app: kibana
spec:
  replicas: 1
  selector:
    matchLabels:
      app: kibana
  template:
    metadata:
      labels:
        app: kibana
    spec:
      containers:
      - name: kibana
        image: docker.elastic.co/kibana/kibana:7.8.0
        imagePullPolicy: IfNotPresent
        resources:
          limits:
            cpu: 1000m
          requests:
            cpu: 100m
        env:
          - name: ELASTICSEARCH_URL
            value: http://elasticsearch:9200
        ports:
        - containerPort: 5601
EOF

稍等大概5分钟,查看一哈kibana的日志 ,直到有这个出现:http server running at http://0:5601  表示kibana部署完成。

","prevMsg":"uninitialized"}
{"type":"log","@timestamp":"2022-10-15T11:45:36Z","tags":["info","plugins","taskManager","taskManager"],"pid":6,"message":"TaskManager is identified by the Kibana UUID: dd9bcb6f-4353-4861-81e5-fe3ac42bb157"}
{"type":"log","@timestamp":"2022-10-15T11:45:36Z","tags":["status","plugin:task_manager@7.8.0","info"],"pid":6,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"}
{"type":"log","@timestamp":"2022-10-15T11:45:36Z","tags":["status","plugin:encryptedSavedObjects@7.8.0","info"],"pid":6,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"}
{"type":"log","@timestamp":"2022-10-15T11:45:36Z","tags":["status","plugin:apm_oss@7.8.0","info"],"pid":6,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"}
{"type":"log","@timestamp":"2022-10-15T11:45:36Z","tags":["status","plugin:console_legacy@7.8.0","info"],"pid":6,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"}
{"type":"log","@timestamp":"2022-10-15T11:45:36Z","tags":["status","plugin:region_map@7.8.0","info"],"pid":6,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"}
{"type":"log","@timestamp":"2022-10-15T11:45:36Z","tags":["status","plugin:ui_metric@7.8.0","info"],"pid":6,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"}
{"type":"log","@timestamp":"2022-10-15T11:45:36Z","tags":["listening","info"],"pid":6,"message":"Server running at http://0:5601"}
{"type":"log","@timestamp":"2022-10-15T11:45:38Z","tags":["info","http","server","Kibana"],"pid":6,"message":"http server running at http://0:5601"}

看一下kibana相关的pod和service是否正常:

[root@k8s-master ~]# k get po,svc -n kube-logging
NAME                          READY   STATUS    RESTARTS   AGE
pod/es-cluster-0              1/1     Running   0          12m
pod/es-cluster-1              1/1     Running   0          12m
pod/es-cluster-2              1/1     Running   0          12m
pod/kibana-588d597485-wljbr   1/1     Running   0          49s
NAME                    TYPE        CLUSTER-IP    EXTERNAL-IP   PORT(S)             AGE
service/elasticsearch   ClusterIP   None          <none>        9200/TCP,9300/TCP   9m21s
service/kibana          NodePort    10.0.132.94   <none>        5601:32042/TCP      49s

打开浏览器,任意一个节点IP+32042就可以登录kibana了。

五,

采集器fluentd的部署

ServiceAccent清单文件:

cat << EOF > fluentd-sa.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
  name: fluentd
  namespace: kube-logging
  labels:
    app: fluentd
EOF

fluentd的rbac:

cat << EOF > fluentd-rbac.yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: fluentd
  labels:
    app: fluentd
rules:
- apiGroups:
  - ""
  resources:
  - pods
  - namespaces
  verbs:
  - get
  - list
  - watch
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: fluentd
roleRef:
  kind: ClusterRole
  name: fluentd
  apiGroup: rbac.authorization.k8s.io
subjects:
- kind: ServiceAccount
  name: fluentd
  namespace: kube-logging
EOF

fluentd的DaemonSet部署清单 :

配置说明:

将宿主机Node的/var/log和/var/lib/docker/containers目录挂载到 fluentd容器中,用于读取容器输出到stdout和stderr的日志,以及kubernetes组件的日志。
资源限制根据实际情况进行调整,避免Fluentd占用太多资源。
利用环境变量,设置了elasticsarch服务的访问地址,此处使用了service名称,也就是这个:elasticsearch.kube-logging.svc.cluster.local。

 

cat << EOF > fluentd-deploy.yaml
apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: fluentd
  namespace: kube-logging
  labels:
    app: fluentd
spec:
  selector:
    matchLabels:
      app: fluentd
  template:
    metadata:
      labels:
        app: fluentd
    spec:
      serviceAccount: fluentd
      serviceAccountName: fluentd
      tolerations:
      - key: node-role.kubernetes.io/master
        effect: NoSchedule
      containers:
      - name: fluentd
        image: fluent/fluentd-kubernetes-daemonset:v1.4.2-debian-elasticsearch-1.1
        imagePullPolicy: IfNotPresent
        env:
          - name:  FLUENT_ELASTICSEARCH_HOST
            value: "elasticsearch.kube-logging.svc.cluster.local"
          - name:  FLUENT_ELASTICSEARCH_PORT
            value: "9200"
          - name: FLUENT_ELASTICSEARCH_SCHEME
            value: "http"
          - name: FLUENTD_SYSTEMD_CONF
            value: disable
        resources:
          limits:
            memory: 512Mi
          requests:
            cpu: 100m
            memory: 200Mi
        volumeMounts:
        - name: varlog
          mountPath: /var/log
        - name: varlibdockercontainers
          mountPath: /var/lib/docker/containers
          readOnly: true
      terminationGracePeriodSeconds: 30
      volumes:
      - name: varlog
        hostPath:
          path: /var/log
      - name: varlibdockercontainers
        hostPath:
          path: /var/lib/docker/containers
EOF

那么,fluent的变量有哪些呢?进入pod里,查看fluent的配置文件,里面有比如 FLUENT_ELASTICSEARCH_HOST,ENV['FLUENT_ELASTICSEARCH_PORT以及日志等级log_level 这里是info等等变量。


root@fluentd-d58br:/fluentd/etc# cat fluent.conf 
# AUTOMATICALLY GENERATED
# DO NOT EDIT THIS FILE DIRECTLY, USE /templates/conf/fluent.conf.erb
@include "#{ENV['FLUENTD_SYSTEMD_CONF'] || 'systemd'}.conf"
@include "#{ENV['FLUENTD_PROMETHEUS_CONF'] || 'prometheus'}.conf"
@include kubernetes.conf
@include conf.d/*.conf
<match **>
   @type elasticsearch
   @id out_es
   @log_level info
   include_tag_key true
   host "#{ENV['FLUENT_ELASTICSEARCH_HOST']}"
   port "#{ENV['FLUENT_ELASTICSEARCH_PORT']}"
   path "#{ENV['FLUENT_ELASTICSEARCH_PATH']}"
   scheme "#{ENV['FLUENT_ELASTICSEARCH_SCHEME'] || 'http'}"
   ssl_verify "#{ENV['FLUENT_ELASTICSEARCH_SSL_VERIFY'] || 'true'}"
   ssl_version "#{ENV['FLUENT_ELASTICSEARCH_SSL_VERSION'] || 'TLSv1'}"
   reload_connections "#{ENV['FLUENT_ELASTICSEARCH_RELOAD_CONNECTIONS'] || 'false'}"
   reconnect_on_error "#{ENV['FLUENT_ELASTICSEARCH_RECONNECT_ON_ERROR'] || 'true'}"
   reload_on_failure "#{ENV['FLUENT_ELASTICSEARCH_RELOAD_ON_FAILURE'] || 'true'}"
   log_es_400_reason "#{ENV['FLUENT_ELASTICSEARCH_LOG_ES_400_REASON'] || 'false'}"
   logstash_prefix "#{ENV['FLUENT_ELASTICSEARCH_LOGSTASH_PREFIX'] || 'logstash'}"
   logstash_format "#{ENV['FLUENT_ELASTICSEARCH_LOGSTASH_FORMAT'] || 'true'}"
   index_name "#{ENV['FLUENT_ELASTICSEARCH_LOGSTASH_INDEX_NAME'] || 'logstash'}"
   type_name "#{ENV['FLUENT_ELASTICSEARCH_LOGSTASH_TYPE_NAME'] || 'fluentd'}"
   <buffer>
     flush_thread_count "#{ENV['FLUENT_ELASTICSEARCH_BUFFER_FLUSH_THREAD_COUNT'] || '8'}"
     flush_interval "#{ENV['FLUENT_ELASTICSEARCH_BUFFER_FLUSH_INTERVAL'] || '5s'}"
     chunk_limit_size "#{ENV['FLUENT_ELASTICSEARCH_BUFFER_CHUNK_LIMIT_SIZE'] || '2M'}"
     queue_limit_length "#{ENV['FLUENT_ELASTICSEARCH_BUFFER_QUEUE_LIMIT_LENGTH'] || '32'}"
     retry_max_interval "#{ENV['FLUENT_ELASTICSEARCH_BUFFER_RETRY_MAX_INTERVAL'] || '30'}"
     retry_forever true
   </buffer>
</match>

 




OK,现在的efk基本就是搭建好了,浏览器登录kibana:

登录前先查询一哈kibana的service暴露的端口,30180是目前的端口:

[root@k8s-master ~]# k get svc -n kube-logging
NAME            TYPE        CLUSTER-IP    EXTERNAL-IP   PORT(S)             AGE
elasticsearch   ClusterIP   None          <none>        9200/TCP,9300/TCP   12h
kibana          NodePort    10.0.132.94   <none>        5601:30180/TCP      12h

不使用测试数据,我们用自己的数据

默认页面是这样的哈

选择上面那个菜单的kibana下面的Discover,进入新建索引页面,输入logstash-*:

这里选择自带的时间戳,下拉框可以选择到的

可以看一下索引是否正常,绿色表示正常的啦:

kibana下的Discover,可以看到详细的数据了

测试日志是否正确的收集:

现有这么多个pod,一哈随机挑选个pod的日志查看

[root@k8s-master ~]# kk
NAMESPACE       NAME                                     READY   STATUS      RESTARTS   AGE     IP               NODE         NOMINATED NODE   READINESS GATES
ingress-nginx   ingress-nginx-admission-create-7bg96     0/1     Completed   0          44h     10.244.0.27      k8s-master   <none>           <none>
ingress-nginx   ingress-nginx-admission-patch-rpbnw      0/1     Completed   0          44h     10.244.1.15      k8s-node1    <none>           <none>
ingress-nginx   ingress-nginx-controller-75sqz           1/1     Running     3          44h     192.168.217.16   k8s-master   <none>           <none>
ingress-nginx   ingress-nginx-controller-lkc24           1/1     Running     4          44h     192.168.217.17   k8s-node1    <none>           <none>
ingress-nginx   ingress-nginx-controller-xjg6s           1/1     Running     3          44h     192.168.217.18   k8s-node2    <none>           <none>
kube-logging    es-cluster-0                             1/1     Running     2          41h     10.244.1.33      k8s-node1    <none>           <none>
kube-logging    es-cluster-1                             1/1     Running     0          6h1m    10.244.2.29      k8s-node2    <none>           <none>
kube-logging    es-cluster-2                             1/1     Running     2          41h     10.244.1.34      k8s-node1    <none>           <none>
kube-logging    fluentd-d58br                            1/1     Running     1          29h     10.244.1.32      k8s-node1    <none>           <none>
kube-logging    fluentd-lrpgc                            1/1     Running     1          29h     10.244.0.43      k8s-master   <none>           <none>
kube-logging    fluentd-mvpsq                            1/1     Running     1          29h     10.244.2.27      k8s-node2    <none>           <none>
kube-logging    kibana-588d597485-wljbr                  1/1     Running     2          41h     10.244.0.45      k8s-master   <none>           <none>
kube-system     coredns-59864d888b-bpzj6                 1/1     Running     3          46h     10.244.0.44      k8s-master   <none>           <none>
kube-system     kube-flannel-ds-4bxpd                    1/1     Running     6          3d17h   192.168.217.16   k8s-master   <none>           <none>
kube-system     kube-flannel-ds-5stwc                    1/1     Running     8          3d17h   192.168.217.18   k8s-node2    <none>           <none>
kube-system     kube-flannel-ds-pg6kq                    1/1     Running     7          3d17h   192.168.217.17   k8s-node1    <none>           <none>
kube-system     nfs-client-provisioner-9c9f9bd86-tz9lk   1/1     Running     5          3d5h    10.244.2.28      k8s-node2    <none>           <none>

查看kibana这个pod的日志,查询前时间改大一些

查看elasticsearch集群的日志:

查看etcd相关的日志:

 

 

OK,kubernetes搭建EFK日志系统圆满完成。

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。 &nbsp; &nbsp; 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
目录
相关文章
WGLOG日志管理系统是怎么收集日志的
WGLOG通过部署Agent客户端采集日志,Agent持续收集指定日志文件并上报Server,Server负责展示与分析。Agent与Server需保持相同版本。官网下载地址:www.wgstart.com
|
4月前
|
Prometheus 监控 Cloud Native
基于docker搭建监控系统&日志收集
Prometheus 是一款由 SoundCloud 开发的开源监控报警系统及时序数据库(TSDB),支持多维数据模型和灵活查询语言,适用于大规模集群监控。它通过 HTTP 拉取数据,支持服务发现、多种图表展示(如 Grafana),并可结合 Loki 实现日志聚合。本文介绍其架构、部署及与 Docker 集成的监控方案。
435 122
基于docker搭建监控系统&日志收集
|
7月前
|
监控 API 开发工具
HarmonyOS Next的HiLog日志系统完全指南:从入门到精通
本文深入解析HarmonyOS Next的HiLog日志系统,涵盖日志级别、核心API、隐私保护与高级回调功能,助你从入门到精通掌握这一重要开发工具。
|
4月前
|
Ubuntu
在Ubuntu系统上设置syslog日志轮替与大小限制
请注意,在修改任何系统级别配置之前,请务必备份相应得原始档案并理解每项变更可能带来得影响。
427 2
|
6月前
|
Cloud Native 中间件 调度
云原生信息提取系统:容器化流程与CI/CD集成实践
本文介绍如何通过工程化手段解决数据提取任务中的稳定性与部署难题。结合 Scrapy、Docker、代理中间件与 CI/CD 工具,构建可自动运行、持续迭代的云原生信息提取系统,实现结构化数据采集与标准化交付。
196 1
云原生信息提取系统:容器化流程与CI/CD集成实践
|
10月前
|
存储 Kubernetes 开发工具
使用ArgoCD管理Kubernetes部署指南
ArgoCD 是一款基于 Kubernetes 的声明式 GitOps 持续交付工具,通过自动同步 Git 存储库中的配置与 Kubernetes 集群状态,确保一致性与可靠性。它支持实时同步、声明式设置、自动修复和丰富的用户界面,极大简化了复杂应用的部署管理。结合 Helm Charts,ArgoCD 提供模块化、可重用的部署流程,显著减少人工开销和配置错误。对于云原生企业,ArgoCD 能优化部署策略,提升效率与安全性,是实现自动化与一致性的理想选择。
639 0
|
9月前
|
存储 Kubernetes 异构计算
Qwen3 大模型在阿里云容器服务上的极简部署教程
通义千问 Qwen3 是 Qwen 系列最新推出的首个混合推理模型,其在代码、数学、通用能力等基准测试中,与 DeepSeek-R1、o1、o3-mini、Grok-3 和 Gemini-2.5-Pro 等顶级模型相比,表现出极具竞争力的结果。
|
6月前
|
存储
WGLOG日志管理系统可以采集网络设备的日志吗
WGLOG日志审计系统提供开放接口,支持外部获取日志内容后发送至该接口,实现日志的存储与分析。详情请访问:https://www.wgstart.com/wglog/docs9.html
|
8月前
|
人工智能 Cloud Native 容灾
深圳农商银行三代核心系统全面投产 以云原生架构筑牢数字化转型基石
深圳农商银行完成第三代核心系统全面上云,日均交易超3000万笔,峰值处理效率提升2倍以上。扎根深圳70余年,与阿里云共建“两地三中心”分布式云平台,实现高可用体系及全栈护航。此次云原生转型为行业提供可复制样本,未来将深化云计算与AI合作,推动普惠金融服务升级。
588 17
|
10月前
|
存储 Kubernetes 监控
K8s集群实战:使用kubeadm和kuboard部署Kubernetes集群
总之,使用kubeadm和kuboard部署K8s集群就像回归童年一样,简单又有趣。不要忘记,技术是为人服务的,用K8s集群操控云端资源,我们不过是想在复杂的世界找寻简单。尽管部署过程可能遇到困难,但朝着简化复杂的目标,我们就能找到意义和乐趣。希望你也能利用这些工具,找到你的乐趣,满足你的需求。
927 33

推荐镜像

更多