云原生|kubernetes|集群网络优化之启用ipvs

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
日志服务 SLS,月写入数据量 50GB 1个月
简介: 云原生|kubernetes|集群网络优化之启用ipvs

前言:

kubernetes集群的网络是比较复杂的,为了更为方便的使用集群,因此,有使用cni网络插件。cni是容器网络接口,作用是实现容器跨主机网络通信.,pod的ip地址段,也称为cidr,现在抛开插件不说,主要是说明一哈kubernetes的三种网络负载均衡模式,由此得出为什么要使用ipvs。

kk8s的kube-proxy支持三种网络负载均衡模式
1、userspace 代理模式
2、iptables代理模式
3、ipvs代理模式

userspace抛开不说,kubernetes自1.8版本开始强推ipvs,之前版本默认使用iptables,这个iptables大家应该比较熟悉的,Linux默认防火墙嘛,它是比较古老的一种网络模式。kubernetes在版本v1.6中已经支持5000个节点,但使用 iptables 的 kube-proxy 实际上是将集群扩展到5000个节点的瓶颈。 在5000节点集群中使用 NodePort 服务,如果有2000个服务并且每个服务有10个 pod,这将在每个工作节点上至少产生20000个iptable 记录,这可能使内核非常繁忙。因此,如果是大集群的话,iptables可能会造成集群崩溃。

 

ipvs也称之为lvs,以往写过一个简单的lvs服务实现,LVS-NAT集群的搭建以及快速验证负载均衡_zsk_john的博客-CSDN博客 那么,它的优点是哪些呢?

1、底层hash算法,查找复杂度为O(1)
事先将所有路由存储到hash表,不像iptables底层O(0)的复杂度,需要一条条规则从上到下匹配,这样随着service的增多(nat规则增多),内核越来越忙,集群性能越来越差。
2、支持多种负载均衡策略
加权、最少连接、最小负载等
3、支持健康检查和重试(后端pod异常重试去访问另一个后端pod)
也就是说ipvs在同等资源占用下拥有最佳的性能
在这种模式下kube-proxy会监视k8s集群中的对象和端点(endpoint),调用netlink接口以相应地创建ipvs规则并定期与k8s中的service对象和endpoints同步ipvs规则,以确保ipvs状态与期望一致。当访问svc时流量就会被重定向到后端的一个pod。
与 iptables 类似,ipvs 于 netfilter 的 hook 功能,但使用哈希表作为底层数据结构并在内核空间中工作。
这说明 ipvs 可以更快地重定向流量,并且在同步代理规则时具有更好的性能。此外,ipvs 为负载均衡算法提供了更多选项,例如:
rr :轮询调度
lc :最小连接数
dh :目标哈希
sh :源哈希
sed :最短期望延迟
nq : 不排队调度

其实说了这么多,总结一哈要表达的意思,

  • 1,ipvs比iptables性能更好,这个更好指的是大集群多节点的情况下,小集群可以忽略不计,因此,生产上还是需要开启ipvs的,如果是测试的集群,那无所谓喽,爱谁谁喽。
  • 2,网络负载基本都是发生在service资源上的,因此,service越多网络负载会越高,当然,生产上不会只使用NodePort形式的service还会使用ingress形式的service,这无疑会进一步加剧网络负担,因此,ipvs的启用是有一定的道理的。
  • 3,ipvs开启主要是在kube-proxy 这个核心服务上启用。
  • 4,在kubernetes集群中启用ipvs的先决条件是内核支持。

好了,不废话了,前因后果我想应该是讲清楚了,那么,下面将是实施步骤了。

kubernetes启用ipvs的步骤

一,

升级内核到4.1.9版本以上

升级方法:Linux centos7升级内核(两种方法:内核编译和yum更新)_zsk_john的博客-CSDN博客_centos升级内核 我的博客内写的应该还算详细。

注:
linux kernel 4.19版本已经将nf_conntrack_ipv4 更新为 nf_conntrack, 而 kube-proxy 1.13 以下版本,强依赖 nf_conntrack_ipv4。 解决方式:
1、降级内核到 4.18
2、升级kube-proxy到 1.13+ (推荐,无需重启机器,影响小)

kube-proxy的版本查询(其实也不需要查,现在应该没人用1.13的kubernetes了吧~~~~~~~~~):

[root@slave1 cfg]# ../bin/kube-proxy --version
Kubernetes v1.18.3

例如升级到5.15:

[root@slave1 cfg]# uname -a
Linux slave1 5.16.9-1.el7.elrepo.x86_64 #1 SMP PREEMPT Thu Feb 10 10:39:14 EST 2022 x86_64 x86_64 x86_64 GNU/Linux

 

二,

安装管理工具后面测试用:

yum install ipvsadm ipset -y

三,

内核修改:

如果内核是 4.18改为nf_conntrack_ipv4

cat > /etc/modules-load.d/50-kubernetes.conf <<EOF
# Load some kernel modules needed by kubernetes at boot
ip_vs
ip_vs_lc
ip_vs_wlc
ip_vs_rr
ip_vs_wrr
ip_vs_lblc
ip_vs_lblcr
ip_vs_dh
ip_vs_sh
ip_vs_fo
ip_vs_nq
ip_vs_sed
ip_vs_ftp
ip_vs_sh
nf_conntrack 
ip_tables
ip_set
xt_set
ipt_set
ipt_rpfilter
ipt_REJECT
ipip
EOF

内核优化:

cat > /etc/sysctl.d/50-kubernetes.conf <<EOF
net.ipv4.ip_forward=1
net.bridge.bridge-nf-call-iptables=1
net.bridge.bridge-nf-call-ip6tables=1
fs.inotify.max_user_watches=525000
fs.may_detach_mounts = 1
net.ipv4.conf.all.route_localnet = 1
vm.overcommit_memory=1
vm.panic_on_oom=0
fs.file-max=52706963
fs.nr_open=52706963
net.netfilter.nf_conntrack_max=2310720
net.ipv4.tcp_keepalive_time = 600
net.ipv4.tcp_keepalive_probes = 3
net.ipv4.tcp_keepalive_intvl =15
net.ipv4.tcp_max_tw_buckets = 36000
net.ipv4.tcp_tw_reuse = 1
net.ipv4.tcp_max_orphans = 327680
net.ipv4.tcp_orphan_retries = 3
net.ipv4.tcp_syncookies = 1
net.ipv4.tcp_max_syn_backlog = 16384
net.ipv4.ip_conntrack_max = 65536
net.ipv4.tcp_max_syn_backlog = 16384
net.ipv4.tcp_timestamps = 0
net.core.somaxconn = 16384
EOF

上面修改的两个文件及时生效:

systemctl enable --now systemd-modules-load.service
sysctl -p

最好是重启一哈服务器,然后查看内核,确认lvs都开启了:

[root@slave1 cfg]# !185
lsmod | grep ip_vs
ip_vs_sed              16384  0 
ip_vs_nq               16384  0 
ip_vs_fo               16384  0 
ip_vs_sh               16384  0 
ip_vs_dh               16384  0 
ip_vs_lblcr            16384  0 
ip_vs_lblc             16384  0 
ip_vs_wrr              16384  0 
ip_vs_rr               16384  3 
ip_vs_wlc              16384  0 
ip_vs_lc               16384  0 
ip_vs                 159744  25 ip_vs_wlc,ip_vs_rr,ip_vs_dh,ip_vs_lblcr,ip_vs_sh,ip_vs_fo,ip_vs_nq,ip_vs_lblc,ip_vs_wrr,ip_vs_lc,ip_vs_sed
nf_conntrack          155648  5 xt_conntrack,nf_nat,nf_conntrack_netlink,xt_MASQUERADE,ip_vs
nf_defrag_ipv6         24576  2 nf_conntrack,ip_vs
libcrc32c              16384  4 nf_conntrack,nf_nat,xfs,ip_vs

 

四,

修改kube-proxy的配置文件

二进制方式安装部署的集群:

最后加一段mode: "ipvs"即可,如果想修改lvs的算法,scheduler: "" 这里是lvs的调度算法,默认是rr,当然也可以改成wrr或者sh等等其它算法,看自己需要啦。

[root@slave1 cfg]# cat kube-proxy-config.yml 
kind: KubeProxyConfiguration
apiVersion: kubeproxy.config.k8s.io/v1alpha1
bindAddress: 0.0.0.0
metricsBindAddress: 0.0.0.0:10249
clientConnection:
  kubeconfig: /opt/kubernetes/cfg/kube-proxy.kubeconfig
hostnameOverride: k8s-node1
clusterCIDR: 10.0.0.0/24
mode: "ipvs"
ipvs:
      excludeCIDRs: null
      minSyncPeriod: 0s
      scheduler: "wrr"
      strictARP: false
      syncPeriod: 0s
      tcpFinTimeout: 0s
      tcpTimeout: 0s
      udpTimeout: 0s

然后重启服务:

systemctl restart kube-proxy

此时的网络状态:

[root@master cfg]# k get svc -A
NAMESPACE     NAME         TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)         AGE
default       kubernetes   ClusterIP   10.0.0.1     <none>        443/TCP         30d
kube-system   coredns      ClusterIP   10.0.0.2     <none>        53/UDP,53/TCP   29d

多了一个kube-pivs0网卡,现有多少个service都写上面了。

[root@slave1 cfg]# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host 
       valid_lft forever preferred_lft forever
2: ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
    link/ether 00:0c:29:e9:9e:89 brd ff:ff:ff:ff:ff:ff
    inet 192.168.217.17/24 brd 192.168.217.255 scope global ens33
       valid_lft forever preferred_lft forever
    inet6 fe80::20c:29ff:fee9:9e89/64 scope link 
       valid_lft forever preferred_lft forever
3: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN 
    link/ether 02:42:fa:3e:c9:3f brd ff:ff:ff:ff:ff:ff
    inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0
       valid_lft forever preferred_lft forever
4: dummy0: <BROADCAST,NOARP> mtu 1500 qdisc noop state DOWN qlen 1000
    link/ether e2:7b:0c:50:67:28 brd ff:ff:ff:ff:ff:ff
5: kube-ipvs0: <BROADCAST,NOARP> mtu 1500 qdisc noop state DOWN 
    link/ether 4a:05:45:0b:b0:bc brd ff:ff:ff:ff:ff:ff
    inet 10.0.0.1/32 brd 10.0.0.1 scope global kube-ipvs0
       valid_lft forever preferred_lft forever
    inet 10.0.0.2/32 brd 10.0.0.2 scope global kube-ipvs0
       valid_lft forever preferred_lft forever

查看一哈日志:

这个时候的日志告诉我们,ipvs调度模式(也叫做算法)没有指定,因此,使用的轮询rr模式作为默认,OK,这样就已经基本可以满足大集群的使用了。

[root@slave1 cfg]# cat ../logs/kube-proxy.slave1.root.log.WARNING.20220926-102105.4110
Log file created at: 2022/09/26 10:21:05
Running on machine: slave1
Binary: Built with gc go1.13.9 for linux/amd64
Log line format: [IWEF]mmdd hh:mm:ss.uuuuuu threadid file:line] msg
W0926 10:21:05.426300    4110 proxier.go:429] IPVS scheduler not specified, use rr by default

cat kube-proxy.INFO  ipvs相关日志:

I0926 13:06:32.992903   14326 server_others.go:259] Using ipvs Proxier.
I0926 13:06:32.993480   14326 proxier.go:426] nodeIP: 192.168.217.17, isIPv6: false
I0926 13:06:32.993907   14326 server.go:583] Version: v1.18.3
I0926 13:06:32.994533   14326 conntrack.go:52] Setting nf_conntrack_max to 262144

 

kubeadm方式部署的集群:

scheduler: "" 这里是lvs的调度算法,默认是rr,当然也可以改成wrr或者sh等等其它算法,看自己需要啦。

kubectl edit configmap kube-proxy -n kube-system
ipvs:
      excludeCIDRs: null
      minSyncPeriod: 0s
      scheduler: ""
      strictARP: false
      syncPeriod: 0s
      tcpFinTimeout: 0s
      tcpTimeout: 0s
      udpTimeout: 0s
    kind: KubeProxyConfiguration
    metricsBindAddress: ""
    mode: "ipvs"     #修改此处
    nodePortAddresses: null

然后删除kube-proxy相关的pod以重启pod即可:

kubectl get pod -n kube-system
kubectl delete pod kube-proxy-5ntj4 kube-proxy-82dk4 kube-proxy-s9jrw  -n kube-system

查看pod日志,日志出现Using ipvs Proxier即可

确认是否成功操作,如下,列出了service的IP即为正确(当然,算法也列出来了,具体算法百度即可。):

[root@slave1 cfg]# ipvsadm -Ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
  -> RemoteAddress:Port           Forward Weight ActiveConn InActConn
TCP  10.0.0.1:443 rr
  -> 192.168.217.16:6443          Masq    1      0          0         
TCP  10.0.0.2:53 rr
  -> 10.244.0.22:53               Masq    1      0          0         
UDP  10.0.0.2:53 rr
  -> 10.244.0.22:53               Masq    1      0          0   

OK,kubernetes集群启用ipvs(lvs)就成功了,别忘记了,所有的kube-proxy都要修改的哦,如果是二进制安装的话

安装完ipvs后的一个错误解决:云原生|kubernetes|解决kube-proxy报错:Not using `--random-fully` in the MASQUERADE rule for iptables_zsk_john的博客-CSDN博客

也就是升级一哈iptables(内核都升级了,ipvs相关的iptables也需要来一哈嘛)

最后,在kubernetes之前的版本中,需要通过设置特性开关SupportIPVSProxyMode来使用IPVS。在kubernetes v1.10版本中,特性开关SupportIPVSProxyMode默认开启,在1.11版本中该特性开关已经被移除。但是如果您使用kubernetes 1.10之前的版本,需要通过--feature-gates=SupportIPVSProxyMode=true开启SupportIPVSProxyMode才能正常使用IPVS

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
5天前
|
Kubernetes Cloud Native Docker
云原生时代的容器化实践:Docker和Kubernetes入门
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术成为企业提升敏捷性和效率的关键。本篇文章将引导读者了解如何利用Docker进行容器化打包及部署,以及Kubernetes集群管理的基础操作,帮助初学者快速入门云原生的世界。通过实际案例分析,我们将深入探讨这些技术在现代IT架构中的应用与影响。
22 2
|
5天前
|
Kubernetes 监控 负载均衡
深入云原生:Kubernetes 集群部署与管理实践
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术以其弹性、可扩展性成为企业IT架构的首选。本文将引导你了解如何部署和管理一个Kubernetes集群,包括环境准备、安装步骤和日常维护技巧。我们将通过实际代码示例,探索云原生世界的秘密,并分享如何高效运用这一技术以适应快速变化的业务需求。
23 1
|
9天前
|
运维 Kubernetes Cloud Native
Kubernetes云原生架构深度解析与实践指南####
本文深入探讨了Kubernetes作为领先的云原生应用编排平台,其设计理念、核心组件及高级特性。通过剖析Kubernetes的工作原理,结合具体案例分析,为读者呈现如何在实际项目中高效部署、管理和扩展容器化应用的策略与技巧。文章还涵盖了服务发现、负载均衡、配置管理、自动化伸缩等关键议题,旨在帮助开发者和运维人员掌握利用Kubernetes构建健壮、可伸缩的云原生生态系统的能力。 ####
|
10天前
|
存储 运维 Kubernetes
云原生之旅:Kubernetes的弹性与可扩展性探索
【10月更文挑战第32天】在云计算的浪潮中,云原生技术以其独特的魅力成为开发者的新宠。本文将深入探讨Kubernetes如何通过其弹性和可扩展性,助力应用在复杂环境中稳健运行。我们将从基础架构出发,逐步揭示Kubernetes集群管理、服务发现、存储机制及自动扩缩容等核心功能,旨在为读者呈现一个全景式的云原生平台视图。
23 1
|
存储 Kubernetes API
在K8S集群中,如何正确选择工作节点资源大小? 2
在K8S集群中,如何正确选择工作节点资源大小?
|
Kubernetes Serverless 异构计算
基于ACK One注册集群实现IDC中K8s集群以Serverless方式使用云上CPU/GPU资源
在前一篇文章《基于ACK One注册集群实现IDC中K8s集群添加云上CPU/GPU节点》中,我们介绍了如何为IDC中K8s集群添加云上节点,应对业务流量的增长,通过多级弹性调度,灵活使用云上资源,并通过自动弹性伸缩,提高使用率,降低云上成本。这种直接添加节点的方式,适合需要自定义配置节点(runtime,kubelet,NVIDIA等),需要特定ECS实例规格等场景。同时,这种方式意味您需要自行
基于ACK One注册集群实现IDC中K8s集群以Serverless方式使用云上CPU/GPU资源
|
Kubernetes API 调度
在K8S集群中,如何正确选择工作节点资源大小?1
在K8S集群中,如何正确选择工作节点资源大小?
|
弹性计算 运维 Kubernetes
本地 IDC 中的 K8s 集群如何以 Serverless 方式使用云上计算资源
本地 IDC 中的 K8s 集群如何以 Serverless 方式使用云上计算资源
|
Kubernetes Ubuntu Shell
shell 脚本实现 k8s 集群环境下指定 ns 资源的 yaml 文件备份
在基于 `k8s` 平台的容器化部署环境中,有时候需要快速的实现部署文件的迁移备份,当 `k8s` 平台部署一个 `app` 时,都会相应的产生一堆 `yaml` 文件,如果 `yaml` 文件数量较少,我们可以人工手动的方式进行拷贝,但是当 `yaml` 文件数量多,并且该 `k8s` 平台部署了多个 `app` 时,如果在采用...
554 0
shell 脚本实现 k8s 集群环境下指定 ns 资源的 yaml 文件备份
|
Prometheus Kubernetes 监控
k8s集群监控(2)-部署kube-state-metrics对资源对象监控
kube-state-metrics对k8s集群中的资源对象监控,包括 pod 、 deployment, service
k8s集群监控(2)-部署kube-state-metrics对资源对象监控