评价模型:层次分析法

简介: 评价模型:层次分析法

写在前面:

博主本人大学期间参加数学建模竞赛十多余次,获奖等级均在二等奖以上。为了让更多学生在数学建模这条路上少走弯路,故将数学建模常用数学模型算法汇聚于此专栏,希望能够对要参加数学建模比赛的同学们有所帮助。


1. 模型建立

1.1 建立层次结构模型

  在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层,当准则过多时(一般为9个时)应进一步分解出子准则层。

  利用层次分析法,对大学生毕业后的选择进行排序:

1.2 构造判断矩阵

  层次结构反映了因素之间的关系,但准则层中的各准则在目标衡量中所占的比重 并不一定相同。设 x i x_i xi与 y i y_i yi对 z z z的影响之比为 a i j a_{ij} aij,则 x i x_i xi与 y i y_i yi对 z z z的影响之比 a j i = 1 / a i j a_{ji}=1/a_{ij} aji=1/aij

若矩阵 A = ( a i j ) m × n A=\left(a_{i j}\right)_{m\times n} A=(aij)m×n满足

( 1 )   a i j > 0 , ( 2 )   a j i = 1 a i j (1)\ a_{i j}>0, \quad (2)\ a_{j i}=\frac{1}{a_{i j}} (1)aij>0,(2)aji=aij1

则称之为正互反矩阵

若矩阵A还满足

a i j a j k = a i k , ∀ i , j , k = 1 , 2 , ⋯   , n a_{i j} a_{j k}=a_{i k}, \forall i, j, k=1,2, \cdots, n aijajk=aik,i,j,k=1,2,,n

则称之为一致矩阵。

n阶正互反矩阵A为一致矩阵当且仅当其最大特征根 λ max ⁡ = n \lambda_{\max }=n λmax=n ,且当正互反矩阵A非一致时,必有 λ max ⁡ > n \lambda_{\max }>n λmax>n

关于如何确定 a i j a_{ij} aij的值,建议引用数字 1-9 及其倒数作为标度。下表列出了 1-9 标度的含义。

现构造准则层的判断矩阵如下:

表 2 准则层的判断矩阵

A B1 B2 B3 B4 B5
B1 1 2 1/2 1 5
B2 1/2 1 1/4 1/2 2
B3 2 4 1 2 3
B4 1 2 1/2 1 4
B5 1/5 1/2 1/3 1/4 1

接着构造方案层的判断矩阵如下:

表 3 方案层的判断矩阵

1.3 判断矩阵的一致性检验

对判断矩阵的一致性检验的步骤如下:

(1)计算一致性指标CI。

C I = λ max ⁡ − n n − 1 C I=\frac{\lambda_{\max }-n}{n-1} CI=n1λmaxn

(2) 查找相应的平均随机一致性指标 RI,对于 n = 1 , 2 , ⋯   , 9 n=1,2, \cdots, 9 n=1,2,,9,对应的RI值如下

(3) 计算一致性比例CR。

C R = C I R I C R=\frac{C I}{R I} CR=RICI

当CR < 0.10 时,认为判断矩阵的一致性是可以接受的,否则应对判断矩阵作适当修正。

1.4 层次总排序及一致性检验

  首先确定准则层对于目标层的权向量 ω 0 \omega_{0} ω0,由于目标层的数量是一个,所以准则层对于目标层的权向量也是一个。先找到准则层的判断矩阵的最大特征值对应的特征向量,然后将此特征向量标准化,使其中的值分布在0和1之间,得到的结果就是准则层对于目标层的权向量;然后确定方案层对于准则层的权向量 ω 1 \omega_{1} ω1,由于准则层有5个指标,所以方案层对于准则层的权向量也是5个,使用同样的方法即可确定方案层对于准则层的5个权向量 ω 11 , ω 12 , ω 13 , ω 14 , ω 15 \omega_{11}, \omega_{12}, \omega_{13}, \omega_{14}, \omega_{15} ω11,ω12,ω13,ω14,ω15,即 ω 1 = [ ω 11 , ω 12 , ω 13 , ω 14 , ω 15 ] \omega_{1}=[\omega_{11}, \omega_{12}, \omega_{13}, \omega_{14}, \omega_{15}] ω1=[ω11,ω12,ω13,ω14,ω15];最后使用方案层对于准则层的权向量 与准则层对于目标层的权向量 加权平均,即可得到方案层4个方案的得分。

  对层次总排序也需作一致性检验,总排序随机一致性比例为

C R = ∑ j = 1 m C I ( j ) ω 0 ( j ) ∑ j = 1 m R I ( j ) ω 0 ( j ) , j = 1 , ⋯ m C R=\frac{\sum_{j=1}^{m} C I(j) \omega_{0}(j)}{\sum_{j=1}^{m} R I(j) \omega_{0}(j)}, j=1, \cdots m CR=j=1mRI(j)ω0(j)j=1mCI(j)ω0(j),j=1,m

  其中m为准则层的个数。

2. 模型求解

利用Matlab编程求解得到准则层对于目标层的权向量 ω 0 \omega_{0} ω0

0.2320,0.1094,0.3721,0.2189,0.0675

方案层对于准则层的权向量 ω 1 \omega_{1} ω1

w1 = 4×5

0.4379    0.2437    0.3890    0.4385    0.3452
0.2437    0.2190    0.3609    0.1096    0.1850
0.0994    0.4379    0.1323    0.2652    0.0997
0.2190    0.0994    0.1177    0.1866    0.3701

准则层各指标的一致性检验结果为

cr1 = 1×5

0.0076    0.0076    0.0727    0.0225    0.0038

均小于0.1,认为判断矩阵的一致性是可以接受的。

  层次总排序得分为0.3923,0.2513,0.1850,0.1850,总排序一致性检验结果为0.0349<0.1,认为层次总排序结果具有较满意的一致性并接受该分析结果。

  Matlab程序如下:

clc,clear 
fid=fopen('ahp.txt','r'); 
n1=5;n2=4; 
a=[]; 
for i=1:n1 
 tmp=str2num(fgetl(fid));
 a=[a;tmp]; %读准则层判断矩阵
end 
for i=1:n1 
 str1=char(['b',int2str(i),'=[];']);
 str2=char(['b',int2str(i),'=[b',int2str(i),';tmp];']);
 eval(str1);
 for j=1:n2 
 tmp=str2num(fgetl(fid));
 eval(str2); %读方案层的判断矩阵
 end
 end 
ri=[0,0,0.58,0.90,1.12,1.24,1.32,1.41,1.45]; %一致性指标
[x,y]=eig(a) %求特征值
lamda=max(diag(y))
num=find(diag(y)==lamda)
w0=x(:,num)/sum(x(:,num))
cr0=(lamda-n1)/(n1-1)/ri(n1); 
for i=1:n1 
 [x,y]=eig(eval(char(['b',int2str(i)]))); 
 lamda=max(diag(y)); 
 num=find(diag(y)==lamda); %最大特征值
 w1(:,i)=x(:,num)/sum(x(:,num))%准则层权值 
 cr1(i)=(lamda-n2)/(n2-1)/ri(n2); %准则层一致性比例
end 
cr1, ts=w1*w0, cr=cr1*w0
目录
相关文章
|
6月前
|
图计算
综合评价法与权重方法汇总
综合评价法与权重方法汇总
|
机器学习/深度学习 监控 算法
信用风险评估评分卡建模方法及原理| 学习笔记
快速学习信用风险评估评分卡建模方法及原理。
信用风险评估评分卡建模方法及原理| 学习笔记
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
因果推断方法为特征工程提供了一个更深层次的框架,使我们能够区分真正的因果关系和简单的统计相关性。这种方法在需要理解干预效果的领域尤为重要,如经济学、医学和市场营销。
61 1
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
|
4月前
|
机器学习/深度学习 Python
贝叶斯分析与决策理论:用于确定分类问题决策点的应用
在分类问题中,一个常见的难题是决定输出为数字时各类别之间的切分点
63 9
贝叶斯分析与决策理论:用于确定分类问题决策点的应用
|
算法 C语言
【数学模型】层次分析
【数学模型】层次分析
【数学模型】层次分析
|
算法
评价模型:TOPSIS法(理想解法)
评价模型:TOPSIS法(理想解法)
643 0
评价模型:TOPSIS法(理想解法)
|
算法 数据挖掘 数据处理
基于SPSSPRO实现层次分析法(AHP)
层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。
293 0
|
机器学习/深度学习 人工智能 算法
NeurIPS 2022 | 直面图的复杂性,港中文等提出面向图数据分布外泛化的因果表示学习(1)
NeurIPS 2022 | 直面图的复杂性,港中文等提出面向图数据分布外泛化的因果表示学习
NeurIPS 2022 | 直面图的复杂性,港中文等提出面向图数据分布外泛化的因果表示学习(1)
|
机器学习/深度学习 自然语言处理 算法
预测蛋白质间相互作用更准确、更细致,一个基于基因本体术语集的Transformer框架
预测蛋白质间相互作用更准确、更细致,一个基于基因本体术语集的Transformer框架
116 0
预测蛋白质间相互作用更准确、更细致,一个基于基因本体术语集的Transformer框架
|
机器学习/深度学习 人工智能
一种基于广义模板的图神经网络,用于准确的有机反应性预测
一种基于广义模板的图神经网络,用于准确的有机反应性预测
123 0