极智AI | 目标检测实现分享一:详解YOLOv1算法实现

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
简介: 大家好,我是极智视界,本文详细介绍一下 YOLOv1 算法的设计与实现,包括训练。

大家好,我是极智视界,本文详细介绍一下 YOLOv1 算法的设计与实现,包括训练。

本文是目标检测类算法实现分享的第一篇,从 用回归做物体检测 算法开山鼻祖 YOLOv1 讲起。YOLO (You Only Look Once) 是充满艺术性和实用性的算法系列,而 YOLOv1 是个开头,在论文《You Only Look Once:Unified, Real-Time Object Detection》中提出。YOLO 目标检测算法以实时著称,并经不断发展能逐步兼顾精度。简单看一些 YOLO 官网的宣传效果:

下面开始,同样这里不止会讲原理还会讲实现及训练。


1、YOLOv1 原理

在论文中其实不止提出了 baseline YOLOv1 模型,还提出了 Fast YOLOv1,而 Fast YOLOv1 旨在让人们看到 YOLO 的效率极限。先来看论文中的实验数据,YOLOv1 的主要对标对象是 Fast R-CNN、DPM,下面是精度 (mAP) 和 性能 (fps) 数据:

训练测试数据集是 PASCAL VOC 0712,硬件是 Nvidia Titan X,这里我们主要关心 Real-Time Detectors,可以看到相比于 DPM 和 Fast R-CNN, YOLOv1 兼顾精度和推理效率,还可以注意到 Fast YOLOv1 的帧率达到了的 155 fps,相当于浮点推理单图 6.5 个 ms,这在当时相当快。

YOLOv1 相比于 Fast-RCNN 能够更加好的区分背景和待检测目标,然而 YOLOv1 并不是一个极度完美的网络,还有一些缺陷 (这跟网络设计相关),如下:

上图是 Fast R-RCNN vs YOLOv1 Error Analysis,可以看到主要有以下几点:

(1) YOLOv1 的预测准确度 Correct 没 Fast R-CNN 高;

(2) YOLOv1 的 Localization 错误率更高,这是由于 YOLOv1 采用直接对位置进行回归的方式进行预测,这不如滑窗式的;

(3) YOLOv1 对于背景预测的错误率更低;

以实验结论为导向,下面介绍 YOLOv1 的网络设计艺术。

1.1 网络结构设计

整个网络由 24 个卷积层 (受 GoogLeNet 启发,有很多 1 x 1 和 3 x 3 交替的结构) 和 2 个全连接层构成,输入图像尺寸为 448 x 448,输出为 7 x 7 x 30,说一下输出为啥是这个 shape。YOLOv1 会把输入图像划成 7 x 7 的 grid,每个 grid 负责预测 2 个目标,对于每个目标来说又有这些属性:x、y、h、w、置信度,然后再加上类别数 20,这样就形成了 7 x 7 x (2 x 5 + 20) = 7 x 7 x 30 的输出 tensor 了。如下:

由于 YOLOv1 将图片划分为 7 x 7 个 grid,虽然每个 grid 负责预测两个目标,但最后会通过抑制只保留一个匹配度最高的 bounding box,也就是说一张图我最多就给你预测七七 49 个目标,那么想一下,如果有两个相邻的目标落在了同一个 grid 中,那么势必会漏检一个,所以 YOLOv1 对于邻近目标的检测效果不好。

1.2 损失函数设计

YOLOv1 的整个损失函数如下,这个比较经典:

一个个来说:

(1) 第一个和第二个都是位置损失。第一个是中心点位置损失,采用简单的平方和进行计算。其中 lij^obj 是一个控制参数,作用是当标签中该 grid 有待检测物体,则为 1,否则为零;

(2) 第二个是宽高损失。这里对 w、h 分别取了根号,原因是这样可以减缓倾向于调整尺寸比较大的预测框,这里的 lij^obj 和第一个中的一样;

(3) 第三个和第四个需要结合起来看,都是预测框的置信度损失。第三个是有目标的时候,第四个是没有目标的时候,我们知道,实际检测时 49 grid 中每个 grid 有目标和没目标也是个长尾问题,往往有目标的情况占少数,所以在这里设计给了 λobj = 5,λnoobj = .5 的权重平衡;

(4) 第五个是类别损失。

原理就讲这么多,接下来是实践。


2、YOLOv1 实现

github 地址:https://github.com/AlexeyAB/darknet

darknet 编译就不多说了,默认已经编译好了,这步不会的同学可以翻看我之前的文章,有相关介绍。

下面介绍一下制作 VOC0712 融合数据集。

2.1 制作 VOC0712 融合数据集

下载数据集

# download datasets
wget https://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar
wget https://pjreddie.com/media/files/VOCtrainval_06-Nov-2007.tar
wget https://pjreddie.com/media/files/VOCtest_06-Nov-2007.tar
# 解压
tar xf VOCtrainval_11-May-2012.tar
tar xf VOCtrainval_06-Nov-2007.tar
tar xf VOCtest_06-Nov-2007.tar

制作 imagelist:

# 生成label及train.txt、test.txt、val.txt
wget https://pjreddie.com/media/files/voc_label.py
python voc_label.py
# 配置 2012train、2007_train、2007_test、2007_val 为训练集,2012_val 为验证集
cat 2007_* 2012_train.txt > train.txt

这个时候的目录结构是这样的:

2.2 训练

然后可以进行训练,这里需要注意的是 YOLOv1 的训练指令和 YOLOv2 和 YOLOv3/v4 的不太一样,YOLOv1 的训练指令如下:

./darknet yolo train cfg/yolov1/yolo.train.cfg

是不是稍微有点好奇,以上命令中并没有指定训练图片路径,这个路径是在代码内部写死的 (包括保存权重的路径 backup/ 也是写死的):

这个地方可以改成自己想指定的 train.txt 的路径,然后重新编译框架:

make clean
make -j32

然后再执行训练指令,开始训练:

可以看到已经开始训练了,这里我们使用了默认的训练配置:

这里的一些参数可以根据自己的需要进行相应的修改。

2.3 验证

训练的过程比较漫长,等训练结束可以测试一下训练结果:

./darknet yolo test cfg/yolov1/yolo.cfg backup/yolo.weights

在 Enter Image Path 中输入待检测图片,如 data/dog.jpg 可以看到检测效果:

这样就完成了 YOLOv1 数据集准备、训练到验证的整个环节。


以上详细分享了 YOLOv1 的原理和实践,希望我的分享能对你的学习有一点帮助。


logo_show.gif


相关文章
|
5天前
|
传感器 人工智能 监控
智慧电厂AI算法方案
智慧电厂AI算法方案通过深度学习和机器学习技术,实现设备故障预测、发电运行优化、安全监控和环保管理。方案涵盖平台层、展现层、应用层和基础层,具备精准诊断、智能优化、全方位监控等优势,助力电厂提升效率、降低成本、保障安全和环保合规。
智慧电厂AI算法方案
|
6天前
|
机器学习/深度学习 人工智能 监控
智慧交通AI算法解决方案
智慧交通AI算法方案针对交通拥堵、违法取证难等问题,通过AI技术实现交通管理的智能化。平台层整合多种AI能力,提供实时监控、违法识别等功能;展现层与应用层则通过一张图、路口态势研判等工具,提升交通管理效率。方案优势包括先进的算法、系统集成性和数据融合性,应用场景涵盖车辆检测、道路环境检测和道路行人检测等。
|
5天前
|
传感器 人工智能 监控
智慧化工厂AI算法方案
智慧化工厂AI算法方案针对化工行业生产过程中的安全风险、效率瓶颈、环保压力和数据管理不足等问题,通过深度学习、大数据分析等技术,实现生产过程的实时监控与优化、设备故障预测与维护、安全预警与应急响应、环保监测与治理优化,全面提升工厂的智能化水平和管理效能。
智慧化工厂AI算法方案
|
1月前
|
机器学习/深度学习 人工智能 算法
"拥抱AI规模化浪潮:从数据到算法,解锁未来无限可能,你准备好迎接这场技术革命了吗?"
【10月更文挑战第14天】本文探讨了AI规模化的重要性和挑战,涵盖数据、算法、算力和应用场景等方面。通过使用Python和TensorFlow的示例代码,展示了如何训练并应用一个基本的AI模型进行图像分类,强调了AI规模化在各行业的广泛应用前景。
31 5
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
1月前
|
机器学习/深度学习 人工智能 开发框架
【AI系统】AI 学习方法与算法现状
在人工智能的历史长河中,我们见证了从规则驱动系统到现代机器学习模型的转变。AI的学习方法基于深度神经网络,通过前向传播、反向传播和梯度更新不断优化权重,实现从训练到推理的过程。当前,AI算法如CNN、RNN、GNN和GAN等在各自领域取得突破,推动技术进步的同时也带来了更大的挑战,要求算法工程师与系统设计师紧密合作,共同拓展AI技术的边界。
79 1
|
23天前
|
存储 JSON 算法
TDengine 检测数据最佳压缩算法工具,助你一键找出最优压缩方案
在使用 TDengine 存储时序数据时,压缩数据以节省磁盘空间是至关重要的。TDengine 支持用户根据自身数据特性灵活指定压缩算法,从而实现更高效的存储。然而,如何选择最合适的压缩算法,才能最大限度地降低存储开销?为了解决这一问题,我们特别推出了一个实用工具,帮助用户快速判断并选择最适合其数据特征的压缩算法。
30 0
|
1月前
|
人工智能 算法 前端开发
无界批发零售定义及无界AI算法,打破传统壁垒,累积数据流量
“无界批发与零售”是一种结合了批发与零售的商业模式,通过后端逻辑、数据库设计和前端用户界面实现。该模式支持用户注册、登录、商品管理、订单处理、批发与零售功能,并根据用户行为计算信用等级,确保交易安全与高效。
|
1月前
|
人工智能 算法 JavaScript
无界SaaS与AI算力算法,链接裂变万企万商万物互联
本文介绍了一种基于无界SaaS与AI算力算法的商业模式的技术实现方案,涵盖前端、后端、数据库及AI算法等关键部分。通过React.js构建用户界面,Node.js与Express搭建后端服务,MongoDB存储数据,TensorFlow实现AI功能。提供了项目结构、代码示例及部署建议,强调了安全性、可扩展性和性能优化的重要性。
|
1月前
|
算法 计算机视觉 Python
圆形检测算法-基于颜色和形状(opencv)
该代码实现了一个圆检测算法,用于识别视频中的红色、白色和蓝色圆形。通过将图像从RGB转换为HSV颜色空间,并设置对应颜色的阈值范围,提取出目标颜色的区域。接着对这些区域进行轮廓提取和面积筛选,使用霍夫圆变换检测圆形,并在原图上绘制检测结果。
66 0

热门文章

最新文章