【云计算与大数据技术】大数据概念和发展背景讲解(图文解释 超详细)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 【云计算与大数据技术】大数据概念和发展背景讲解(图文解释 超详细)

一、什么是大数据

大数据是一个不断发展的概念,可以指任何体量或负载下那个超出常规数据处理方法和处理能力的数据,数据本身可以是结构化,半结构化甚至是非结构化的,随着物联网技术与可穿戴设备的飞速发展,数据规模变得越来越大,内容越来越复杂,更新速度越来越快,大数据和应用已成为产业升级与新产业崛起的重要推动力量

从狭义上来讲:大数据主要是指处理海量数据的关键技术以及在各个领域中的应用,是指从各种组织形式和类型的数据中发掘有价值的信息的能力,另一方面,狭义的大数据反映的是数据规模之大,以至于无法在一定时间内用常规数据处理软件和方法对其内容有效的抓取,管理和处理,狭义的大数据主要是指海量数据的获取,存储,管理,计算分析,挖掘与应用的全新技术体系

广义上讲,大数据包括大数据技术、大数据工程、大数据科学和大数据应用等与大数据相关的领域  

 

二、大数据的特点

学术界已经总结了大数据的许多特点,包括体量巨大,速度极快,模态多样,潜在价值大等。IBM公司使用3V来描述大数据的特点

Volume(体 量 )。 通过各种设备产生的海量数据体量巨大 ,远大于目前互联网上的信息流量

Variety(多 样 )。 大数据类型繁多,在编码方式 、数据格式 、应用特 征等多个方面存在差异

Velocity(速 率 )。 数据以非常高的速率到达系统内部,这就要求处理数据段 的速度必须非常快  

三、大数据发展

大数据技术是一种新一代技术和构架,它成本较低,以快速的采集、处理和分析技术 从各种超大规模的数据中提取价值

大数据采集与预处理方向 - 目前很多公司已经推出了多种数据清洗和质量控制工具(如IBM 公司的 DataStage)

大数据存储与管理方向 - 这个方向最常见的挑战是存储规模大,存储管理复杂, 需要兼顾结构化、非结构化和半结构化的数据

大数据计算模式方向 - 目前出现了多种典型的 计算模式,包括大数据查询分析计算(如 Hive)、批处理计算(如 Hadoop MapReduce) 等

大数据分析与挖掘方向 - 在数据量迅速增加的同时,还要进行深度的数据分析和挖掘,并且对自动化分析要求越来越高

大数据可视化分析方向 - 通过可视化方式来帮助人们探索和解释复杂的数据, 有利于决策者挖掘数据的商业价值,进而有助于大数据的发展

大数据安全方向 - 文件访问控制权限 ACL、基础设备加密、匿名化保护技术和加密保 护等技术正在最大程度地保护数据安全

四、大数据的应用

梅西百货的实时定价机制 - 根据需求和库存的情况,该公司基于 SAS的系统对多达7300万种货品进行实时调价

Tipp24AG 针对欧洲博彩业构建的下注和预测平台 - 该公司用KXEN软件来分析数十亿计的交易以及客户的特性,然后通过预测模型对特定用户进行动态的营销活动

沃尔玛的搜索 - 这家零售业寡头为其网站 Walmart.com 自行设计了最新的搜索引擎 Polaris,利用语义数据进行文本分析、机器学习和同义词挖掘等

TescoPLC(特易购)和运营效率 - 这家连锁超市在其数据仓库中收集了700万部冰箱的数据。通过对这些数据的分析进行更全面的监控,并进行主动的维修以降低整体能耗

创作不易 觉得有帮助请点赞关注收藏~~~

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1月前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
117 2
|
1月前
|
存储 分布式计算 NoSQL
【赵渝强老师】大数据技术的理论基础
本文介绍了大数据平台的核心思想,包括Google的三篇重要论文:Google文件系统(GFS)、MapReduce分布式计算模型和BigTable大表。这些论文奠定了大数据生态圈的技术基础,进而发展出了Hadoop、Spark和Flink等生态系统。文章详细解释了GFS的架构、MapReduce的计算过程以及BigTable的思想和HBase的实现。
|
7天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
34 2
|
21天前
|
SQL 运维 大数据
轻量级的大数据处理技术
现代大数据应用架构中,数据中心作为核心,连接数据源与应用,承担着数据处理与服务的重要角色。然而,随着数据量的激增,数据中心面临运维复杂、体系封闭及应用间耦合性高等挑战。为缓解这些问题,一种轻量级的解决方案——esProc SPL应运而生。esProc SPL通过集成性、开放性、高性能、数据路由和敏捷性等特性,有效解决了现有架构的不足,实现了灵活高效的数据处理,特别适用于应用端的前置计算,降低了整体成本和复杂度。
|
29天前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
69 4
|
1月前
|
机器学习/深度学习 存储 大数据
云计算与大数据技术的融合应用
云计算与大数据技术的融合应用
|
1月前
|
存储 弹性计算 分布式计算
云计算在大数据处理中的优势与挑战
云计算在大数据处理中的优势与挑战
|
1月前
|
SQL 存储 大数据
单机顶集群的大数据技术来了
大数据时代,分布式数仓如MPP成为热门技术,但其高昂的成本让人望而却步。对于多数任务,数据量并未达到PB级,单体数据库即可胜任。然而,由于SQL语法的局限性和计算任务的复杂性,分布式解决方案显得更为必要。esProc SPL作为一种开源轻量级计算引擎,通过高效的算法和存储机制,实现了单机性能超越集群的效果,为低成本、高效能的数据处理提供了新选择。
|
1月前
|
SQL 存储 算法
比 SQL 快出数量级的大数据计算技术
SQL 是大数据计算中最常用的工具,但在实际应用中,SQL 经常跑得很慢,浪费大量硬件资源。例如,某银行的反洗钱计算在 11 节点的 Vertica 集群上跑了 1.5 小时,而用 SPL 重写后,单机只需 26 秒。类似地,电商漏斗运算和时空碰撞任务在使用 SPL 后,性能也大幅提升。这是因为 SQL 无法写出低复杂度的算法,而 SPL 提供了更强大的数据类型和基础运算,能够实现高效计算。
|
22天前
|
存储 安全 网络安全
云计算与网络安全:技术融合的双刃剑
在数字化浪潮中,云计算如同一股不可阻挡的力量,推动着企业和个人用户步入一个高效、便捷的新时代。然而,随之而来的网络安全问题也如影随形,成为制约云计算发展的阿喀琉斯之踵。本文将探讨云计算服务中的网络安全挑战,揭示信息保护的重要性,并提供实用的安全策略,旨在为读者呈现一场技术与安全的较量,同时指出如何在享受云服务带来的便利的同时,确保数据的安全和隐私。
26 6