【Tensorflow深度学习】优化算法、损失计算、模型评估、向量嵌入、神经网络等模块的讲解(超详细必看)

简介: 【Tensorflow深度学习】优化算法、损失计算、模型评估、向量嵌入、神经网络等模块的讲解(超详细必看)

觉得有帮助请点赞关注收藏~~~

一、优化算法

1)Adam算法: 基于一阶或二阶动量(Moments)的随机梯度下降算法,动量是非负超参数,主要作用是调整方向梯度下降并抑制波动。此算法适用于数据量和参数规模较大的场合。

(2)SGD算法: 动量梯度下降算法。

(3)Adagrad算法: 学习率与参数更新频率相关。

(4)Adamax算法:Adam算法的扩展型,词嵌入运算有时优于Adam算法。

(5)Ftrl算法:谷歌发明的算法,适用于大稀疏特征空间的场合。

(6)Nadam算法: 基于Adam算法,使用Nesterov动量。

(7)RMSprop算法:基于梯度平方均值。

(8)Adadelta算法:使用随机梯度下降算法和自适应学习率,避免训练过程中学习率持续劣化以及手动设定问题。

二、损失计算

Tensorflow的keras.losses库中定义了各种损失值得运算类,下面重点介绍常用的几种

(1)CategoricalCrossentropy类: 计算标签和预测值之间的交叉熵损失(Crossentropy Loss)。

(2)SparseCategoricalCrossentropy类: 原理与CategoricalCrossentropy类似。比较适用于有两个及以上标签类别的场景,如果运算基于独热表示标签,更适合使用CategoricalCrossentropy损失。

(3) BinaryCrossentropy类: 类似CategoricalCrossentropy,适用于0或者1二分类的场合。

(4)MeanSquaredError类:计算标签和预测值之间的误差平方均值。

(5)MeanAbsoluteError类:计算标签和预测值之间的绝对误差均值。

(6)Hinge类:计算真实值和预测值之间的铰链损失。

三、模型评估

Tensorflow的keras.metrics库中定义了模型评估指标 下面介绍几种代表性指标

(1)AUC类:代表Area Under The Curve,计算ROC 的曲线下面积。

(2)MeanSquaredError类:计算预测值和真实值的误差平方均值。

(3)MeanAbsoluteError类:计算标签值和预测值的误差绝对均值。

(4)Accuracy类:计算标签值和预测值相同的频率。

(5)CategoricalCrossentropy类: 计算标签和预测值之间的交叉熵。

(6)SparseCategoricalCrossentropy类: 原理与CategoricalCrossentropy类似,比较适用于有两个及以上标签类别的场景

四、向量嵌入

机器学习模型将向量作为输入,因此在将字符串输入模型之前需要将字符串转换为数值向量,也称为词嵌入。词嵌入提供了一种高效表示的方法,其中相似的词具有相似的编码,在处理大型数据集时,通常会看到多维的词嵌入处理,高纬度嵌入可以体现词间的细粒度关系,但需要更多的数据来学习

Embedding(    input_dim, output_dim, embeddings_initializer,    embeddings_regularizer, activity_regularizer,    embeddings_constraint, mask_zero, input_length, **kwargs )

主要参数说明:

input_dim:词语大小;

output_dim:嵌入维度;

embeddings_initializer:嵌入矩阵初始值;

embeddings_regularizer:嵌入矩阵调整函数;

embeddings_constraint:嵌入矩阵限定函数;

mask_zero:布尔值,判断是否零作为填充;

input_length:输入序列长度。

五、神经网络

门控机制基于循环神经网络,门控循环单元网络(GRU)类似于附带遗忘门的长短期记忆网络,但参数比后者少,门控循环单元网络在自然语言处理的部分性能能与长短期记忆网络相似,在较小数据集上的分析效果比较突出 语法定义如下

GRU(units, activation, recurrent_activation,    use_bias, kernel_initializer,recurrent_initializer,    bias_initializer, kernel_regularizer,    recurrent_regularizer, bias_regularizer, activity_regularizer,kernel_constraint, recurrent_constraint, bias_constraint,dropout, recurrent_dropout, return_sequences, return_state,go_backwards, stateful, unroll, time_major,    reset_after, **kwargs)

主要参数说明:

·  units:输出空间维度;

·  Activation:激活函数;

·  recurrent_activation:重复激活函数;

·  use_bias:偏置量标识;

·  kernel_initializer:权重矩阵初始化;

·  dropout:输入的丢弃率,介于0和1之间;

·  go_backwards:逆向处理输入序列。

创作不易  觉得有帮助请点赞关注收藏~~~

相关文章
|
13天前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
156 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
4天前
|
机器学习/深度学习 存储 算法
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
102 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
|
5天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
42 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
147 68
|
3天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
3天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
1天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1月前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
54 18
|
1月前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
347 55

热门文章

最新文章