【深度学习】常用算法生成对抗网络、自编码网络、多层感知机、反向传播等讲解(图文解释 超详细)

简介: 【深度学习】常用算法生成对抗网络、自编码网络、多层感知机、反向传播等讲解(图文解释 超详细)

觉得有帮助请点赞关注收藏~~~

一、生成对抗网络GAN

Generative Adversarial Network 两个组件组成:一个生成器,用于生成虚拟数据,另一个是鉴别器,用于(GAN)生成式深度学习算法,可创建类似于训练数据的新数据实例。

GAN 工作原理概要如下:

(1)初始训练期间,生成器产生虚拟数据,并输入鉴别器。

(2)鉴别器基于学习模型区分生成器的假数据和真实样本数据。

(3)对抗网络将鉴别结果发送给生成器和鉴别器以更新相应模型。

二、自编码网络

自编码器(Autoencoder)是神经网络的一种特殊形式,将输入复制到输出,因此也可以称为恒等函数。其核心思想是将输入复制到输出时,神经网络学习输入的特定属性。

其核心思想是将输入复制到输出时,神经网络学习输入的特定属性。自编码器的主要用途如下

1:降维:通过将多维数据转换为较小维度数据 降低数据复杂性

2:特征学习:学习数据的特定或者重要属性

3:生成建模:通过自编码器学习数据样本特征来生成新的数据样本

三、强化学习 (增强学习)

增强学习和监督学习的区别:

(1) 增强学习是试错学习(Trail-and-error),由于没有直接的标注信息提供参考,需要不断与环境进行交互,通过试错的方式来获得最优行为策略。

(2) 激励延迟(Delayed Return),增强学习缺乏参考信息,激励在时间上通常延迟发生,因此如何优化分配激励成为不能忽略的课题。

四、多层感知机MLP

多层感知机属于前馈神经网络,具有激活功能,多层感知机由完全连接的输入层和输出层组成,它们具有相同的输入层和输出层,但可能有多个隐藏层,隐藏层输出可以通过激活函数进行变换。

原理:

(1)将数据馈送到网络的输入层。

(2)基于输入层和隐藏层之间的权重执行计算。多层感知机使用激活函数确定触发节点的信息。常用的激活函数包括 ReLU、Sigmoid 函数和 Tanh。

(3)训练模型获得相关性以及变量之间的依赖关系。

五、自组织映射神经网络SOM

它可以减少数据处理的维度,不同于基于损失函数反向传递算法的神经网络,自组织映射网络使用竞争学习策略,依靠神经元互相竞争实现优化网络的目标

工作原理:

(1)为所有节点初始化权重,并随机选择一个输入样本。

(2)查找与随机输入样本的最优相似度。

(3)基于最优相似度遴选优胜邻域节点,更新优胜领域节点的权重信息。

(4)迭代计算,直到满足迭代次数或者要求。

六、径向基函数网络RBFN

它是一种特殊类型的前馈神经网络,它使用径向基函数作为激活函数,径向基函数是沿径向对称的函数,径向基函数网络由输入层,隐藏层和输出层组成。

工作原理:

(1)接收信息输入,此时不执行变换计算。

(2)在隐藏层对数据进行变换,隐藏层节点使用输入与中心向量的距离(如欧式距离)作为径向基函数的自变量,这与反向传播网络常用输入与权向量的内积作为自变量存在区别。

(3)输出层对隐藏层的输出信息执行加权运算,作为神经网络的结果。

七、反向传播算法BP

BP神经网络基于梯度下降法,将M维数据输入欧式空间映射到N维输出欧式空间,由正向传播过程和反向传播过程组成。

信号从层传递到层(黑色箭头),误差没有达到预期值时,误差传播方向与信号方向相反(绿色箭头)。

八、连接时序分类CTC

连接时序分类(Connectionist Temporal Classification,CTC)主要用于处理序列标注问题中的输入与输出标签的对齐问题。基于传统方法的自然语言处理,语音转换为数据以后,需明确单帧信息对应的标签才能执行有效的训练,因此在训练数据之前需要执行语音信息对齐的预处理。其缺点是工时量消耗大,在标签对齐信息部分缺失的情况下,正确的预测比较困难;而且预测结果只利用了局部信息。CTC由于使用端到端训练,并不需要输入和输出对齐,输出整体序列的预测概率,因此可以克服这些问题。CTC通过引入一个特殊的空白字符(blank),解决变长映射的问题,其典型应用场景是文本识别。

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
5月前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
163 0
|
5月前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
465 0
|
4月前
|
存储 机器学习/深度学习 监控
网络管理监控软件的 C# 区间树性能阈值查询算法
针对网络管理监控软件的高效区间查询需求,本文提出基于区间树的优化方案。传统线性遍历效率低,10万条数据查询超800ms,难以满足实时性要求。区间树以平衡二叉搜索树结构,结合节点最大值剪枝策略,将查询复杂度从O(N)降至O(logN+K),显著提升性能。通过C#实现,支持按指标类型分组建树、增量插入与多维度联合查询,在10万记录下查询耗时仅约2.8ms,内存占用降低35%。测试表明,该方案有效解决高负载场景下的响应延迟问题,助力管理员快速定位异常设备,提升运维效率与系统稳定性。
275 4
|
4月前
|
机器学习/深度学习 算法
采用蚁群算法对BP神经网络进行优化
使用蚁群算法来优化BP神经网络的权重和偏置,克服传统BP算法容易陷入局部极小值、收敛速度慢、对初始权重敏感等问题。
429 5
|
5月前
|
存储 算法 安全
即时通讯安全篇(三):一文读懂常用加解密算法与网络通讯安全
作为开发者,也会经常遇到用户对数据安全的需求,当我们碰到了这些需求后如何解决,如何何种方式保证数据安全,哪种方式最有效,这些问题经常困惑着我们。52im社区本次着重整理了常见的通讯安全问题和加解密算法知识与即时通讯/IM开发同行们一起分享和学习。
439 9
|
4月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
5月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
376 2
|
4月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
227 0
|
5月前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
136 8
|
5月前
|
算法 数据挖掘 区块链
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
157 2