【深度学习】常用算法生成对抗网络、自编码网络、多层感知机、反向传播等讲解(图文解释 超详细)

简介: 【深度学习】常用算法生成对抗网络、自编码网络、多层感知机、反向传播等讲解(图文解释 超详细)

觉得有帮助请点赞关注收藏~~~

一、生成对抗网络GAN

Generative Adversarial Network 两个组件组成:一个生成器,用于生成虚拟数据,另一个是鉴别器,用于(GAN)生成式深度学习算法,可创建类似于训练数据的新数据实例。

GAN 工作原理概要如下:

(1)初始训练期间,生成器产生虚拟数据,并输入鉴别器。

(2)鉴别器基于学习模型区分生成器的假数据和真实样本数据。

(3)对抗网络将鉴别结果发送给生成器和鉴别器以更新相应模型。

二、自编码网络

自编码器(Autoencoder)是神经网络的一种特殊形式,将输入复制到输出,因此也可以称为恒等函数。其核心思想是将输入复制到输出时,神经网络学习输入的特定属性。

其核心思想是将输入复制到输出时,神经网络学习输入的特定属性。自编码器的主要用途如下

1:降维:通过将多维数据转换为较小维度数据 降低数据复杂性

2:特征学习:学习数据的特定或者重要属性

3:生成建模:通过自编码器学习数据样本特征来生成新的数据样本

三、强化学习 (增强学习)

增强学习和监督学习的区别:

(1) 增强学习是试错学习(Trail-and-error),由于没有直接的标注信息提供参考,需要不断与环境进行交互,通过试错的方式来获得最优行为策略。

(2) 激励延迟(Delayed Return),增强学习缺乏参考信息,激励在时间上通常延迟发生,因此如何优化分配激励成为不能忽略的课题。

四、多层感知机MLP

多层感知机属于前馈神经网络,具有激活功能,多层感知机由完全连接的输入层和输出层组成,它们具有相同的输入层和输出层,但可能有多个隐藏层,隐藏层输出可以通过激活函数进行变换。

原理:

(1)将数据馈送到网络的输入层。

(2)基于输入层和隐藏层之间的权重执行计算。多层感知机使用激活函数确定触发节点的信息。常用的激活函数包括 ReLU、Sigmoid 函数和 Tanh。

(3)训练模型获得相关性以及变量之间的依赖关系。

五、自组织映射神经网络SOM

它可以减少数据处理的维度,不同于基于损失函数反向传递算法的神经网络,自组织映射网络使用竞争学习策略,依靠神经元互相竞争实现优化网络的目标

工作原理:

(1)为所有节点初始化权重,并随机选择一个输入样本。

(2)查找与随机输入样本的最优相似度。

(3)基于最优相似度遴选优胜邻域节点,更新优胜领域节点的权重信息。

(4)迭代计算,直到满足迭代次数或者要求。

六、径向基函数网络RBFN

它是一种特殊类型的前馈神经网络,它使用径向基函数作为激活函数,径向基函数是沿径向对称的函数,径向基函数网络由输入层,隐藏层和输出层组成。

工作原理:

(1)接收信息输入,此时不执行变换计算。

(2)在隐藏层对数据进行变换,隐藏层节点使用输入与中心向量的距离(如欧式距离)作为径向基函数的自变量,这与反向传播网络常用输入与权向量的内积作为自变量存在区别。

(3)输出层对隐藏层的输出信息执行加权运算,作为神经网络的结果。

七、反向传播算法BP

BP神经网络基于梯度下降法,将M维数据输入欧式空间映射到N维输出欧式空间,由正向传播过程和反向传播过程组成。

信号从层传递到层(黑色箭头),误差没有达到预期值时,误差传播方向与信号方向相反(绿色箭头)。

八、连接时序分类CTC

连接时序分类(Connectionist Temporal Classification,CTC)主要用于处理序列标注问题中的输入与输出标签的对齐问题。基于传统方法的自然语言处理,语音转换为数据以后,需明确单帧信息对应的标签才能执行有效的训练,因此在训练数据之前需要执行语音信息对齐的预处理。其缺点是工时量消耗大,在标签对齐信息部分缺失的情况下,正确的预测比较困难;而且预测结果只利用了局部信息。CTC由于使用端到端训练,并不需要输入和输出对齐,输出整体序列的预测概率,因此可以克服这些问题。CTC通过引入一个特殊的空白字符(blank),解决变长映射的问题,其典型应用场景是文本识别。

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
13天前
|
机器学习/深度学习 搜索推荐 安全
深度学习之社交网络中的社区检测
在社交网络分析中,社区检测是一项核心任务,旨在将网络中的节点(用户)划分为具有高内部连接密度且相对独立的子群。基于深度学习的社区检测方法,通过捕获复杂的网络结构信息和节点特征,在传统方法基础上实现了更准确、更具鲁棒性的社区划分。
27 7
|
14天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习的奥秘:探索神经网络背后的魔法
【10月更文挑战第22天】本文将带你走进深度学习的世界,揭示神经网络背后的神秘面纱。我们将一起探讨深度学习的基本原理,以及如何通过编程实现一个简单的神经网络。无论你是初学者还是有一定基础的学习者,这篇文章都将为你提供有价值的信息和启示。让我们一起踏上这段奇妙的旅程吧!
|
14天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
55 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
15天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
1天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
8 0
|
3天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习的奇迹:如何用神经网络识别图像
【10月更文挑战第33天】在这篇文章中,我们将探索深度学习的奇妙世界,特别是卷积神经网络(CNN)在图像识别中的应用。我们将通过一个简单的代码示例,展示如何使用Python和Keras库构建一个能够识别手写数字的神经网络。这不仅是对深度学习概念的直观介绍,也是对技术实践的一次尝试。让我们一起踏上这段探索之旅,看看数据、模型和代码是如何交织在一起,创造出令人惊叹的结果。
10 0
|
4天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。
|
10天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第26天】在这篇文章中,我们将深入探讨卷积神经网络(CNN)的基本原理、结构和应用。CNN是深度学习领域的一个重要分支,广泛应用于图像识别、语音处理等领域。我们将通过代码示例和实际应用案例,帮助读者更好地理解CNN的概念和应用。
下一篇
无影云桌面