🔥🔥TCP协议:三次握手、四次挥手,你真的了解吗?

简介: 这篇面试文章主要介绍了TCP协议的网络分层以及TCP的三次握手和四次挥手的原理。TCP协议的分层结构和三次握手、四次挥手的原理确保了数据的可靠传输和连接的可靠建立与断开。这些概念和原理在网络工程中起着重要的作用,并且是网络面试中常见的考点。

什么是TCP网络分层

image

应⽤层

应用层是网络协议栈中的最顶层,主要负责应用程序之间的通信。其中一种常见的应用层协议是HTTP协议,它定义了应用程序之间如何传递报文。

传输层

传输层是为两台主机之间的应用进程提供端到端的逻辑通信的层级。其中一种常见的传输层协议是TCP协议,它负责可靠的数据传输。

⽹络互连层

网络互连层负责主机之间的通信,它将传输层产生的数据包封装成分组数据包,并通过路由选择将其发送到目标主机。IP协议是网络互连层的主要协议,TCP和UDP协议都使用IP协议作为网络层协议。该层的主要作用是为数据包添加源地址和目标地址,并将数据包传送到目标地址。

⽹络访问层

网络访问层,也称为网络接口层,负责主机连接到物理网络所需的硬件和相关协议。以太网、Wi-Fi和蓝牙工作在这一层。网络访问层提供了主机与物理网络之间的接口。

网络协议栈中的分层结构有许多优点:

  1. 各层独立:分层结构限制了依赖关系的范围,使得各层之间可以使用标准化的接口进行通信。每一层不需要了解上下层的具体工作方式,这样增加或修改一个应用层协议不会对传输层协议造成影响。
  2. 灵活性更好:分层结构使得路由器等网络设备可以只加载较少数量的协议,不需要应用层和传输层的功能。这样可以根据设备的需求选择加载的协议,提高了设备的灵活性。
  3. 易于测试和维护:分层结构提高了可测试性,可以独立地测试特定层的功能。此外,如果某一层有了更好的实现,可以整体替换掉该层,而无需对其他层进行修改,简化了系统的维护工作。
  4. 能促进标准化:分层结构使得每一层的职责清晰明确,便于进行标准化工作。每一层都有自己的规范和接口,使得不同厂商或组织可以遵循相同的标准进行开发,提高了网络设备和应用程序的互操作性。

TCP的三次握手中为什么是三次?为什么不是两次、四次?

image

TCP的三次握手是为了建立可靠的连接,确保通信双方都能够正常发送和接收数据。下面是三次握手的过程:

  1. 第一次握手:客户端向服务器发送一个带有SYN标志的数据包,表示请求建立连接。客户端将随机生成一个初始序列号(ISN)并将其放入SYN字段中。
  2. 第二次握手:服务器接收到客户端的请求后,会发送一个带有SYN和ACK标志的数据包作为响应。服务器将确认序列号(ACK)设置为客户端的ISN加一,并生成自己的初始序列号。
  3. 第三次握手:客户端收到服务器的响应后,会发送一个带有ACK标志的数据包作为确认。客户端将确认序列号设置为服务器的ISN加一。

通过三次握手,双方确认了彼此的收发能力和初始序列号,并建立了可靠的连接。为什么是三次握手而不是两次或四次呢?

如果只有两次握手,那么在某些情况下可能会导致不可靠的连接建立。例如,客户端发送了一个建立连接的请求,但由于网络延迟或其他原因,该请求在传输过程中被延迟到达服务器。服务器此时会误认为客户端要建立连接,于是发送确认响应。然而,客户端并未发送过请求,因此不会回复确认。这样就会导致服务器一直等待客户端的回复,浪费资源。

通过引入第三次握手,可以解决上述问题。在第一次握手时,客户端发出建立连接的请求,服务器接收到后进行响应。但是如果响应丢失了,客户端会再次发送请求,即第二次握手。服务器接收到后再次响应,这样就确保了双方都能正确地建立连接。

至于为什么不是四次握手,主要是因为虽然四次握手也可以实现可靠地同步双方的初始序列号,但由于第二步和第三步可以合并为一步,所以最终演变成了三次握手。而两次握手只能保证一方的初始序列号被对方成功接收,无法保证双方的初始序列号都能被确认接收。因此,三次握手是为了确保TCP连接的稳定性和可靠性而采取的最佳选择。

TCP的四次挥手为什么是四次?为什么不能是三次?

image

TCP的四次挥手是为了结束已建立的连接,确保双方都能正确地关闭连接并释放资源。下面是四次挥手的过程:

  1. 第一次挥手:客户端发送一个带有FIN(结束)标志的数据包,表示自己已经没有数据要发送了,请求关闭连接。
  2. 第二次挥手:服务器接收到客户端的结束请求后,会发送一个带有ACK(确认)标志的数据包作为响应,表示已收到客户端的结束请求。
  3. 第三次挥手:服务器发送一个带有FIN标志的数据包,表示自己也没有数据要发送了,请求关闭连接。
  4. 第四次挥手:客户端接收到服务器的结束请求后,会发送一个带有ACK标志的数据包作为确认,表示已收到服务器的结束请求。

通过四次挥手,双方确认彼此的结束请求,并最终关闭连接。为什么是四次挥手而不是三次?

在关闭连接时,需要确保双方都完成了数据的传输和接收,以防止数据丢失或错误。如果只有三次挥手,可能会导致一些问题。

假设只有三次挥手,当客户端发送结束请求后,服务器收到后会发送确认,表示已收到客户端的结束请求。但是在此过程中,服务器可能还有未发送完的数据,如果直接关闭连接,那么这些数据就会丢失。因此,引入第三次挥手,服务器在发送结束请求前,先发送所有未发送完的数据,并等待客户端的确认。客户端接收到服务器的结束请求后,会确认并处理完未接收的数据,然后发送确认,表示自己已准备好关闭连接。

通过四次挥手,可以确保双方都能正确地结束连接,并处理未发送和未接收的数据,保证数据的完整性和可靠性。因此,关闭连接需要四次挥手。

总结

分层结构具有多个优点。首先,每个层次都是相对独立的,这意味着可以在不影响其他层次的情况下进行修改和更新。其次,分层结构具有更好的灵活性,可以根据需要添加、删除或调整层次。第三,由于各层次之间的明确接口,易于测试和维护。最后,分层结构有助于促进标准化,因为每个层次的功能和接口都可以被规范化和标准化。

TCP协议中的三次握手用于建立可靠的连接。通过三次握手,客户端和服务器可以确认对方的可靠性和可用性,并同意建立连接。而四次挥手的设计则旨在确保连接可以正确关闭。在四次挥手过程中,双方通信结束前,首先向对方发送关闭连接的请求,然后等待对方确认关闭请求,最后确认对方关闭请求并关闭连接。这两个过程是TCP协议中非常重要的部分。

以上只是一篇关于TCP协议的面试文章的一小部分内容。后续将会提供更多有针对性的面试题,以深入探讨TCP协议的相关细节。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
5月前
|
负载均衡 网络协议 算法
TCP 三次握手和四次挥手详解
TCP 三次握手和四次挥手详解
67 3
|
6月前
|
网络协议
【干货】TCP/IP协议三次握手四次挥手
【干货】TCP/IP协议三次握手四次挥手
【干货】TCP/IP协议三次握手四次挥手
|
网络协议
一文彻底搞定TCP协议的三次握手和四次挥手
通过本章的探险,你将学会如何TCP协议的三次握手和四次挥手
|
6月前
|
网络协议 网络架构
|
7月前
|
网络协议
说说TCP为什么需要三次握手和四次挥手? _
TCP连接的建立需要三次握手,确保双方的接收和发送能力正常,而关闭连接则涉及四次挥手以确保数据传输完成。这个过程包括客户端发送SYN开始连接,服务器响应SYN并ACK,然后客户端再次ACK确认连接建立。终止连接时,客户端发送FIN,服务器回ACK,服务器发送FIN,最后客户端再发送ACK确认关闭。四次挥手的目的是防止已失效的连接请求报文突然传到服务器,导致不必要的资源消耗。
|
7月前
|
网络协议
TCP的三次握手和四次挥手
TCP的三次握手和四次挥手
40 0
|
网络协议 安全
网络:TCP协议三次握手与四次挥手
网络:TCP协议三次握手与四次挥手
81 0
|
7月前
|
网络协议
TCP三次握手 四次挥手
TCP三次握手 四次挥手
|
7月前
|
存储 网络协议 算法
TCP协议的三次握手与四次挥手
TCP协议的三次握手与四次挥手
65 2
|
网络协议 数据安全/隐私保护
TCP协议握手挥手
TCP握手挥手
53 2