Windows系统上配置Python开发环境

简介: Python安装程序首先,您需要从Python官方网站(https://www.python.org/downloads/)下载Python的最新稳定版本。在页面上选择适用于Windows的安装程序。运行安装程序下载完成后,双击下载的安装程序(通常是一个.exe文件),然后按照安装向导的指示进行操作。请确保在安装过程中勾选“Add Python to PATH”选项,这将使您能够在命令行中轻松访问Python。

Python安装程序

首先,您需要从Python官方网站(https://www.python.org/downloads/)下载Python的最新稳定版本。在页面上选择适用于Windows的安装程序。

运行安装程序

下载完成后,双击下载的安装程序(通常是一个.exe文件),然后按照安装向导的指示进行操作。请确保在安装过程中勾选“Add Python to PATH”选项,这将使您能够在命令行中轻松访问Python。

选择安装选项

在安装过程中,您可以选择自定义安装选项。如果您不熟悉Python的设置,可以使用默认选项继续安装。

完成安装

安装程序会自动将Python安装在您选择的目录中。完成安装后,您应该能够在命令提示符中输入“python”来启动Python解释器。

自动环境变量设置

选中下面,可以自动环境变量设置;

手动环境变量设置

在Windows 10 及更高版本中,右键点击“开始”按钮,选择“系统”。

在“系统”页面中,点击右侧的“高级系统设置”。

在弹出的“系统属性”窗口中,点击“环境变量”按钮。

在“环境变量”窗口的“系统变量”部分,找到并选择名为“Path”的变量,然后点击“编辑”按钮。

在“编辑环境变量”窗口中,点击“新建”按钮,并将Python的安装路径添加到列表中,例如:D:\PythonXX

验证安装

打开命令提示符或PowerShell,并键入以下命令来验证Python是否成功安装:

python --version
目录
相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
124 55
|
28天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品安全追溯系统的深度学习模型
使用Python实现智能食品安全追溯系统的深度学习模型
58 4
|
17天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
102 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
18天前
|
机器学习/深度学习 算法 前端开发
基于Python深度学习的果蔬识别系统实现
果蔬识别系统,主要开发语言为Python,基于TensorFlow搭建ResNet卷积神经网络算法模型,通过对12种常见的果蔬('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜')图像数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django框架搭建Web网页端可视化操作界面,以下为项目实现介绍。
29 4
基于Python深度学习的果蔬识别系统实现
|
1月前
|
安全 Windows
【Azure Cloud Service】在Windows系统中抓取网络包 ( 不需要另外安全抓包工具)
通常,在生产环境中,为了保证系统环境的安全和纯粹,是不建议安装其它软件或排查工具(如果可以安装,也是需要走审批流程)。 本文将介绍一种,不用安装Wireshark / tcpdump 等工具,使用Windows系统自带的 netsh trace 命令来获取网络包的步骤
69 32
|
1月前
|
Python
Python之音乐专辑管理系统
音乐专辑管理系统是一款用于管理和维护音乐专辑信息的应用程序,支持添加、删除、修改和查询专辑详情(如专辑名、艺术家、发行日期及曲目列表)。系统运行需Python 3.x环境,硬件要求较低,适合个人及小型团队使用。
51 4
|
1月前
|
Python
Python实现摇号系统
本文介绍了如何使用Python构建一个简单的摇号系统,包括用户输入、随机抽取、结果展示和日志记录等功能。通过导入`random`、`datetime`和`logging`模块,实现了从参与者名单中随机抽取中奖者,并记录每次摇号的结果,方便后续查看和审计。完整代码示例提供了从功能实现到主程序调用的全过程。
35 2
|
1月前
|
JSON Shell Linux
配置Python的环境变量可
配置Python的环境变量
145 4
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
79 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
1月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
89 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型