Python高级算法——支持向量机(Support Vector Machine,SVM)

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: Python高级算法——支持向量机(Support Vector Machine,SVM)

Python中的支持向量机(Support Vector Machine,SVM):理论与实践

支持向量机(Support Vector Machine,SVM)是一种强大的监督学习算法,主要用于分类和回归问题。本文将深入讲解Python中的支持向量机,包括算法原理、核函数、超参数调优、软间隔与硬间隔、优缺点,以及使用代码示例演示SVM在实际问题中的应用。

算法原理

1. SVM的基本原理

支持向量机的基本原理是找到一个超平面,使得不同类别的样本点在该超平面上的投影尽可能远离。SVM在高维空间中找到一个最优的超平面,从而实现对样本的有效分类。

核函数

2. 核函数的作用与种类

核函数用于将原始特征空间映射到更高维的空间,使得样本在新的空间中更容易分离。常用的核函数包括线性核、多项式核、高斯核等。

超参数调优

3. 超参数的选择与调优

SVM中的超参数包括惩罚项系数C、核函数的参数、软间隔与硬间隔的参数等。通过交叉验证等方法进行超参数的选择与调优是SVM模型优化的重要步骤。

软间隔与硬间隔

4. 软间隔与硬间隔的区别

硬间隔SVM要求训练数据是线性可分的,对噪声敏感;而软间隔SVM允许一定程度上的分类错误,提高了模型的泛化能力。

优缺点

5. SVM算法的优缺点

SVM的优点包括在高维空间中表现出色、对小样本集表现好、能够处理非线性问题。缺点主要在于对大规模数据集的计算开销较大,对参数和核函数的选择较为敏感。

使用代码演示

6. 使用代码演示

下面是一个使用Scikit-Learn库实现SVM进行分类的示例:

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn import metrics

# 加载鸢尾花数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 将数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 构建SVM分类器
svm_classifier = SVC(kernel='linear', C=1)
# 'linear' 表示线性核函数,C是惩罚项系数

# 在训练集上训练模型
svm_classifier.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = svm_classifier.predict(X_test)

# 计算准确率
accuracy = metrics.accuracy_score(y_test, y_pred)
print(f'准确率:{accuracy}')

应用场景

7. 应用场景

支持向量机广泛应用于图像识别、文本分类、手写字体识别、生物信息学等领域。由于其对高维数据的适应能力,SVM在处理复杂问题上表现出色。

总结

支持向量机是一种强大的监督学习算法,通过在高维空间中找到最优的超平面实现样本的有效分类。本文详细介绍了SVM的算法原理、核函数、超参数调优、软间隔与硬间隔、优缺点等关键概念,并通过代码示例演示了SVM在鸢尾花数据集上的应用。在实际应用中,根据问题的特点选择合适的核函数和调优参数,能够提高SVM模型的性能,取得更好的分类效果。

目录
相关文章
|
1月前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
48 0
|
1月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
60 4
|
1月前
|
机器学习/深度学习 缓存 算法
Python算法设计中的时间复杂度与空间复杂度,你真的理解对了吗?
【10月更文挑战第4天】在Python编程中,算法的设计与优化至关重要,尤其在数据处理、科学计算及机器学习领域。本文探讨了评估算法性能的核心指标——时间复杂度和空间复杂度。通过详细解释两者的概念,并提供快速排序和字符串反转的示例代码,帮助读者深入理解这些概念。同时,文章还讨论了如何在实际应用中平衡时间和空间复杂度,以实现最优性能。
66 6
|
11天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
41 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
11天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
37 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
11天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
50 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
15天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
32 2
|
1月前
|
存储 机器学习/深度学习 算法
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
蓝桥杯Python编程练习题的集合,涵盖了从基础到提高的多个算法题目及其解答。
63 3
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
|
24天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
26 3
|
27天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
72 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
下一篇
无影云桌面