Azure Machine Learning - Azure可视化图像分类操作实战

简介: Azure Machine Learning - Azure可视化图像分类操作实战

在本文中,你将了解如何使用Azure可视化页面创建图像分类模型。 生成模型后,可以使用新图像测试该模型,并最终将该模型集成到你自己的图像识别应用中。

一、数据准备

  • 一组用于训练分类模型的图像。 可以使用 GitHub 上的一组示例图像。 或者,可以根据下面的提示选择你自己的图像。

二、创建自定义视觉资源

若要使用自定义视觉服务,需要在 Azure 中创建“自定义视觉训练和预测”资源。 为此,在 Azure 门户中填写创建自定义视觉页上的对话框窗口,以创建“训练和预测”资源。

三、创建新项目

在 Web 浏览器中,导航到自定义影像服务网页,然后选择“登录” 。 使用登录 Azure 门户时所用的帐户进行登录。

  1. 若要创建首个项目,请选择“新建项目” 。 将出现“创建新项目”对话框 。

  1. 输入项目名称和描述。 然后选择自定义视觉训练资源。 如果登录帐户与 Azure 帐户相关联,则“资源”下拉列表将显示所有兼容的 Azure 资源。

注意 如果没有可用的资源,请确认已使用登录 Azure 门户时所用的同一帐户登录 customvision.ai。 此外,请确认在自定义视觉网站中选择的“目录”与自定义视觉资源所在 Azure 门户中的目录相同。 在这两个站点中,可从屏幕右上角的下拉帐户菜单中选择目录。

  1. 选择“项目类型”下的“分类”。 然后,在“分类类型”下,根据用例选择“多标签”或“多类”。 多标签分类将任意数量的标记应用于图像(零个或多个),而多类分类将图像分类为单个类别(提交的每个图像将被分类为最有可能的标记)。 以后可以更改分类类型(如果需要)。
  2. 接下来,选择一个可用域。 每个域都会针对特定类型的图像优化模型,如下表所述。 稍后可按需更改域。
    | 域 | 目的 | | --- | --- | | 常规 | 针对各种图像分类任务进行优化。 如果其他域都不合适,或者不确定要选择哪个域,请选择“通用”域。 | | 食物 | 针对餐厅菜肴的照片进行优化。 如果要对各种水果或蔬菜的照片进行分类,请使用“食品”域。 | | 特征点 | 针对可识别的自然和人造地标进行优化。 在照片中的地标清晰可见的情况下,该域效果最佳。 即使照片中的人物稍微遮挡了地标,该域仍然有效。 | | 零售 | 针对购物目录或购物网站中的图像进行优化。 若想对连衣裙、裤子和衬衫进行精准分类,请使用此域。 | | 压缩域 | 针对移动设备上实时分类的约束进行优化。 可导出压缩域生成的模型在本地运行。 |
  3. 最后,选择“创建项目”。

四、选择训练图像

作为最低要求,我们建议在初始训练集中每个标记使用至少 30 张图像。 此外还需要收集一些额外的图像,以便在训练模型后测试模型。

为了有效地训练模型,请使用具有视觉多样性的图像。 选择在以下方面有所不同的图像:

  • 照相机角度
  • 照明
  • background
  • 视觉样式
  • 个人/分组主题
  • 大小
  • type

此外,请确保所有训练图像满足以下条件:

  • .jpg、.png、.bmp 或 .gif 格式
  • 大小不超过 6 MB (预测图像不超过 4 MB)
  • 最短的边不小于 256 像素;任何小于此像素的图像将通过自定义影像服务自动纵向扩展

五、上传和标记图像

在本部分中,将上传图像并手动标记图像以帮助训练分类器。

  1. 若要添加图像,请选择“添加图像”,然后选择“浏览本地文件” 。 选择“打开”以移至标记。 标记选择将应用于已选择要上传的整组图像,因此根据其应用的标记将图像分成单独的组更容易上传。 还可在上传图像后更改单个图像的标记。

  1. 若要创建标记,请在“我的标记”字段中输入文本,然后按 Enter 键。 如果标记已存在,它会在下拉列表菜单中显示。 在多标签项目中,可以将多个标记添加到图像,但多类项目中只能添加一个标记。 若要完成上传图像,请使用“上传 [编号] 文件”按钮。

  1. 上传图像后,选择“完成”。

若要上传另一组图像,请返回到本部分顶部并重复上述步骤。

六、训练分类器

若要训练分类器,请选择“训练”按钮。 分类器使用所有当前图像来创建模型,该模型可标识每个标记的视觉质量。 这个过程可能需要几分钟。

此训练过程应该只需要几分钟的时间。 在此期间,会在“性能”选项卡显示有关训练过程的信息。

七、评估分类器

完成训练后,评估并显示该模型的性能。 自定义视觉服务使用提交用于训练的图像来计算精确度和召回率。 精确度和召回率是分类器有效性的两个不同的度量:

  • 精确度表示已识别的正确分类的分数。 例如,如果模型将 100 张图像识别为狗,实际上其中 99 张是狗,那么精确度为 99%。
  • 召回率表示正确识别的实际分类的分数。 例如,如果实际上有 100 张苹果的图像,并且该模型将 80 张标识为苹果,则召回率为 80%。

概率阈值

请注意“性能”选项卡左窗格上的“概率阈值”滑块 。这是预测被视为正确时所需具有的置信度(用于计算精度和召回率)。

当解释具有高概率阈值的预测调用时,它们往往会以牺牲召回为代价返回高精度的结果 - 检测到的分类是正确的,但许多分类仍然未被检测到。 使用较低的概率阈值则恰恰相反 - 大多数实际分类会被检测到,但该集合内有更多误报。 考虑到这一点,应该根据项目的特定需求设置概率阈值。 稍后,在客户端接收预测结果时,应使用与此处所用概率阈值相同的概率阈值。

八、管理训练迭代

每次训练分类器时,都会创建一个新的迭代,其中包含已更新的性能指标。 可以在“性能”选项卡的左窗格中查看所有迭代。还可以找到“删除”按钮,如果迭代已过时,可以使用该按钮删除迭代。 删除迭代时,会删除唯一与其关联的所有图像。

请参阅[将模型与预测 API 配合使用],以了解如何以编程方式访问已训练模型。

目录
相关文章
|
数据可视化 算法 数据挖掘
基于python的笔记本电脑购买意愿影响因素分析,包括情感分析和聚类分析
本文通过Python大数据技术对笔记本电脑评论数据进行情感分析和聚类分析,揭示了产品性能、外观设计和用户地区等因素对购买意愿的重要影响,并为企业提供了优化产品设计和销售策略的参考。
378 2
|
6月前
|
人工智能 Cloud Native Serverless
从理论到落地:MCP 实战解锁 AI 应用架构新范式
本文旨在从 MCP 的技术原理、降低 MCP Server 构建复杂度、提升 Server 运行稳定性等方面出发,分享我们的一些实践心得。
2713 102
|
人工智能 运维 数据可视化
阿里云百炼 MCP服务使用教程合集
阿里云百炼推出首个全生命周期MCP服务,支持一键部署、无需运维,具备高可用与低成本特点。该服务提供多类型供给、低成本托管及全链路工具兼容,帮助企业快速构建专属智能体。MCP(模型上下文协议)作为标准化开源协议,助力大模型与外部工具高效交互。教程涵盖简单部署、GitHub运营、数据分析可视化及文档自动化等场景,助您快速上手。欢迎加入阿里云百炼生态,共同推动AI技术发展!
6181 0
|
PyTorch 算法框架/工具 计算机视觉
目标检测实战(二):YoloV4-Tiny训练、测试、评估完整步骤
本文介绍了使用YOLOv4-Tiny进行目标检测的完整流程,包括模型介绍、代码下载、数据集处理、网络训练、预测和评估。
708 2
目标检测实战(二):YoloV4-Tiny训练、测试、评估完整步骤
|
计算机视觉 异构计算
目标检测实战(四):YOLOV4-Tiny 源码训练、测试、验证详细步骤
这篇文章详细介绍了使用YOLOv4-Tiny进行目标检测的实战步骤,包括下载源码和权重文件、配置编译环境、进行简单测试、训练VOC数据集、生成训练文件、准备训练、开始训练以及多GPU训练的步骤。文章还提供了相应的代码示例,帮助读者理解和实践YOLOv4-Tiny模型的训练和测试过程。
1179 0
|
机器学习/深度学习 算法 计算机视觉
经典神经网络论文超详细解读(五)——ResNet(残差网络)学习笔记(翻译+精读+代码复现)
经典神经网络论文超详细解读(五)——ResNet(残差网络)学习笔记(翻译+精读+代码复现)
5428 1
经典神经网络论文超详细解读(五)——ResNet(残差网络)学习笔记(翻译+精读+代码复现)
|
存储 IDE 搜索推荐
解锁Python黑科技:字典树Trie,让你的数据检索快到飞起!
字典树(Trie),又称前缀树或单词查找树,是一种专为字符串快速检索设计的高效数据结构。本文深入探讨了Trie树的基本原理及其在Python中的实现方法,并展示了如何通过插入和搜索操作来提高数据检索性能。Trie树广泛应用于自动补全、拼写检查、IP路由表以及数据压缩等领域,其高效的前缀匹配能力使其成为处理大量字符串的理想选择。通过本文的学习,你将能更好地利用Trie树解决实际问题,提升编程技能。
501 0
|
机器学习/深度学习 自然语言处理 自动驾驶
神经网络有哪些应用场景呢
【10月更文挑战第14天】神经网络有哪些应用场景呢
|
存储 BI Android开发
全开源仿第八区H5APP封装打包分发系统源码
全开源仿第八区H5APP封装打包分发系统源码
429 4
|
消息中间件 运维 监控