AI 容器镜像部署 Qwen-VL-Chat

本文涉及的产品
无影云电脑个人版,1个月黄金款+200核时
资源编排,不限时长
无影云电脑企业版,4核8GB 120小时 1个月
简介: 本文将基于阿里云 AMD 服务器和龙蜥 AI 容器服务,快速搭建出个人版视觉 AI 助手服务

背景介绍

Qwen-VL 是阿里云研发的大规模视觉语言模型(Large Vision Language Model)。Qwen-VL 可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。在 Qwen-VL 的基础上,利用对齐机制打造出基于大语言模型的视觉 AI 助手 Qwen-VL-Chat,它支持更灵活的交互方式,包括多图、多轮问答、创作等能力,天然支持英文、中文等多语言对话,支持多图输入和比较,指定图片问答,多图文学创作等。

本文将基于阿里云 AMD 服务器和龙蜥 AI 容器服务,快速搭建出个人版视觉 AI 助手服务。

创建 ECS 实例

创建 ECS 实例时需要根据模型的大小对实例规格进行选择。由于整个模型的推理过程需要耗费大量的计算资源,运行时内存占用大量内存,为了保证模型运行的稳定,实例规格选择 ecs.g8a.4xlarge。同时,Qwen-VL-Chat 的运行需要下载多个模型文件,会占用大量存储空间,在创建实例时,存储盘至少分配 100 GB。最后,为了保证环境安装以及模型下载的速度,实例带宽分配 100 Mbps。

实例操作系统选择 Alibaba Cloud Linux 3.2104 LTS 64 位。

创建 Docker 运行环境

安装 Docker

在 Alibaba Cloud Linux 3 上安装 Docker 可以参考 安装Docker并使用(Linux)。安装完成后请确保 Docker 守护进程已经启用。

systemctl status docker

创建并运行 PyTorch AI 容器

龙蜥社区提供了丰富的基于 Anolis OS 的容器镜像,其中就包括针对 AMD 优化的 PyTorch 镜像,可以使用该镜像直接创建一个 PyTorch 运行环境。

docker pull registry.openanolis.cn/openanolis/pytorch-amd:1.13.1-23-zendnn4.1
docker run -d -it --name pytorch-amd --net host -v $HOME:/root registry.openanolis.cn/openanolis/pytorch-amd:1.13.1-23-zendnn4.1

以上命令首先拉取容器镜像,随后使用该镜像创建一个以分离模式运行的,名为pytorch-amd的容器,并将用户的家目录映射到容器中,以保留开发内容。

手动部署流程

进入容器环境

PyTorch 容器创建运行后,使用以下命令进入容器环境。

docker exec -it -w /root pytorch-amd /bin/bash

后续命令需在容器环境中执行,如意外退出,请使用以上命令重新进入容器环境。如需查看当前环境是否为容器,可以使用以下命令查询。

cat /proc/1/cgroup | grep docker
# 有回显信息则为容器环境

软件安装配置

在部署 Qwen-VL-Chat 之前,需要安装一些必备软件。

yum install -y git git-lfs wget gperftools-libs anolis-epao-release

后续下载预训练模型需要启用 Git LFS 的支持。

git lfs install

下载源码与预训练模型

下载 GitHub 项目源码,以及预训练模型。

git clone https://github.com/QwenLM/Qwen-VL.git
git clone https://www.modelscope.cn/qwen/Qwen-VL-Chat.git qwen-vl-chat

部署运行环境

在部署 Python 环境之前,可以更换 pip 下载源,加快依赖包的下载速度。

mkdir -p ~/.config/pip && cat > ~/.config/pip/pip.conf <<EOF
[global]
index-url=http://mirrors.cloud.aliyuncs.com/pypi/simple/
[install]
trusted-host=mirrors.cloud.aliyuncs.com
EOF

安装 Python 运行依赖。

yum install -y python3-transformers python-einops
pip install tiktoken transformers_stream_generator accelerate gradio

为了保证 ZenDNN 可以完全释放 CPU 算力,需要设置两个环境变量:OMP_NUM_THREADSGOMP_CPU_AFFINITY

cat > /etc/profile.d/env.sh <<EOF
export OMP_NUM_THREADS=\$(nproc --all)
export GOMP_CPU_AFFINITY=0-\$(( \$(nproc --all) - 1 ))
EOF
source /etc/profile

运行网页版 Demo

在项目源码中提供了网页版 Demo,可以用来和 Qwen-VL-Chat 进行交互。

cd ~/Qwen-VL
export LD_PRELOAD=/usr/lib64/libtcmalloc.so.4
python3 web_demo_mm.py -c=${HOME}/qwen-vl-chat/ --cpu-only --server-name=0.0.0.0 --server-port=7860

部署完成后可以通过 http://<ECS 公网 IP>:7860 来访问服务。

image.png

相关实践学习
通过容器镜像仓库与容器服务快速部署spring-hello应用
本教程主要讲述如何将本地Java代码程序上传并在云端以容器化的构建、传输和运行。
Kubernetes极速入门
Kubernetes(K8S)是Google在2014年发布的一个开源项目,用于自动化容器化应用程序的部署、扩展和管理。Kubernetes通常结合docker容器工作,并且整合多个运行着docker容器的主机集群。 本课程从Kubernetes的简介、功能、架构,集群的概念、工具及部署等各个方面进行了详细的讲解及展示,通过对本课程的学习,可以对Kubernetes有一个较为全面的认识,并初步掌握Kubernetes相关的安装部署及使用技巧。本课程由黑马程序员提供。 &nbsp; 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情:&nbsp;https://www.aliyun.com/product/kubernetes
相关文章
|
1月前
|
人工智能 并行计算 安全
从零到一,打造专属AI王国!大模型私有化部署全攻略,手把手教你搭建、优化与安全设置
【10月更文挑战第24天】本文详细介绍从零开始的大模型私有化部署流程,涵盖需求分析、环境搭建、模型准备、模型部署、性能优化和安全设置六个关键步骤,并提供相应的示例代码,确保企业能够高效、安全地将大型AI模型部署在本地或私有云上。
527 7
|
13天前
|
人工智能 Java Serverless
阿里云函数计算助力AI大模型快速部署
随着人工智能技术的快速发展,AI大模型已经成为企业数字化转型的重要工具。然而,对于许多业务人员、开发者以及企业来说,探索和利用AI大模型仍然面临诸多挑战。业务人员可能缺乏编程技能,难以快速上手AI模型;开发者可能受限于GPU资源,无法高效构建和部署AI应用;企业则希望简化技术门槛,以更低的成本和更高的效率利用AI大模型。
70 12
|
11天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
15天前
|
机器学习/深度学习 存储 人工智能
【AI系统】训练后量化与部署
本文详细介绍了训练后量化技术,涵盖动态和静态量化方法,旨在将模型权重和激活从浮点数转换为整数,以优化模型大小和推理速度。通过KL散度等校准方法和量化粒度控制,文章探讨了如何平衡模型精度与性能,同时提供了端侧量化推理部署的具体实现步骤和技术技巧。
41 1
【AI系统】训练后量化与部署
|
1月前
|
Java 应用服务中间件 Linux
【Docker容器化技术】docker安装与部署、常用命令、容器数据卷、应用部署实战、Dockerfile、服务编排docker-compose、私有仓库
本文主要讲解了Docker的安装与部署、常用命令、容器数据卷、应用部署实战、Dockerfile、服务编排docker-compose、私有仓库以及Docker容器虚拟化与传统虚拟机比较。
577 11
【Docker容器化技术】docker安装与部署、常用命令、容器数据卷、应用部署实战、Dockerfile、服务编排docker-compose、私有仓库
|
20天前
|
人工智能 监控 Serverless
《主动式智能导购AI助手构建》解决方案部署测评
在数字化时代,智能导购AI助手已成为提升客户体验和销售效率的重要工具。本文将基于个人体验,对《主动式智能导购AI助手构建》解决方案的部署过程进行详细评测。
38 3
|
5天前
|
人工智能 API Windows
免费部署本地AI大语言模型聊天系统:Chatbox AI + 马斯克grok2.0大模型(简单5步实现,免费且比GPT4.0更好用)
本文介绍了如何部署本地AI大语言模型聊天系统,使用Chatbox AI客户端应用和Grok-beta大模型。通过获取API密钥、下载并安装Chatbox AI、配置模型,最终实现高效、智能的聊天体验。Grok 2大模型由马斯克X-AI发布,支持超长文本上下文理解,免费且易于使用。
35 0
|
1月前
|
机器学习/深度学习 数据采集 Docker
Docker容器化实战:构建并部署一个简单的Web应用
Docker容器化实战:构建并部署一个简单的Web应用
|
1月前
|
运维 开发者 Docker
Docker Compose:简化容器化应用的部署与管理
Docker Compose:简化容器化应用的部署与管理
|
18天前
|
人工智能 Kubernetes Cloud Native
荣获2024年AI Cloud Native典型案例,阿里云容器产品技术能力获认可
2024全球数字经济大会云·AI·计算创新发展大会,阿里云容器服务团队携手客户,荣获“2024年AI Cloud Native典型案例”。