[C++从入门到精通] 1.函数调用、访问权限、类简介(Struct和Class区别)

简介: [C++从入门到精通] 1.函数调用、访问权限、类简介(Struct和Class区别)

一、结构回顾

结构:自定义的数据类型,不管C++/C结构都用Struct定义,与C中的结构相比,C++中的结构不仅仅有成员变量,还可以在其中定义成员函数(或方法)

代码:

struct Student
{
  int number;      //成员变量
  char name[100];  //成员变量
  void num()       //成员函数(方法)
  {
    number++;
  }
};

三种调用函数方式对结构成员变量值的影响 :

1、传值调用

《结构变量》作为函数形参的一种调用方式

//值传递
void func(Student temp)//《结构变量》作为函数形参的一种调用方式(值传递)
{
  temp.number = 2000;
  strcpy_s(temp.name, sizeof(temp.name), "lisi");
  //这里通过添加监视,看到形参结构变量temp的内存地址已经变为了0x00d7fbe4
  return;
}
int main()
{
  Student student;
  student.number = 1001;
  strcpy_s(student.name, sizeof(student.name), "zhangsan");
  func(student);                 //通过添加监视,看到实参结构变量student的内存地址是0x00d7fd20
  cout << student.number << endl;//这里发现 结构Student成员变量number值并没有因为调用函数而变成2000
  cout << student.name << endl;  //这里发现 结构Student成员变量name值并没有因为调用函数变成“lisi”
}

可以看到,调用函数func之前,实参结构变量student的内存地址是0x00d7fd20

调用函数func,进入函数内部,发现形参结构变量temp的内存地址已经变为了0x00d7fbe4

交互失败的原因:传值调用,形参temp仅仅是对实参student进行了值拷贝,两者的内存地址是不同的,所以函数里对形参的改变不会影响到函数外的变量的值。

PS:上面这种传值调用方法(值传递)效率比较低,因为实参传递给形参时,发生了内存内容的拷贝(实参内容拷贝给了形参),尤其是当结构或类对象做形参,外界实参需要拷贝较多的值给函数形参的的时候会体现的更明显。

2、引用调用

《引用&》作为函数形参的一种调用方式,就是把结构变量的引用传入函数中,相当于将变量的地址传进了函数内部,对形参的内存地址(内容)进行更改就相当于对函数外部实参的内存地址(内容)进行修改了。

//引用传递
void func1(Student &temp1)
{
  temp1.number = 2000;
  strcpy_s(temp1.name, sizeof(temp1.name), "lisi");
  //这里通过添加监视,看到形参结构变量temp1的内存地址仍然是0x00d7fd20
  return;
}
int main()
{
  Student student;
  student.number = 1001;
  strcpy_s(student.name, sizeof(student.name), "zhangsan");
  func1(student);                //通过添加监视,看到实参结构变量student的内存地址是0x00d7fd20
  cout << student.number << endl;//这里发现 结构Student成员变量number值因为调用函数func1而变成2000
  cout << student.name << endl;  //这里发现 结构Student成员变量name值因为调用函数func1变成“lisi”
}

可以看到,调用函数func1之前,实参结构变量student的内存地址是0x00d7fd20

调用函数func1,进入函数内部,发现形参结构变量temp1的内存地址仍然是0x00d7fd20

交互成功的原因:形参temp1直接引用实参student的地址,对这个地址上的变量进行操作,相当于直接操作实参student上的变量,省略了数值拷贝的过程,效率很高。

3、指针调用

《用指向结构体的指针*》作为函数形参的一种调用方式,通过对结构变量取地址作为实参赋给函数的形参指针。

//指针传递
void func2(Student *temp2)//《用指向结构体的指针》作为函数参数
{
  temp2->number = 2000;
  strcpy_s(temp2->name, sizeof(temp2->name), "lisi");
  //这里通过添加监视,看到形参结构变量temp1的内存地址仍然是0x003af858 
  return;
}
int main()
{
  Student student;
  student.number = 1001;
  strcpy_s(student.name, sizeof(student.name), "zhangsan");
  func2(&student);               //通过添加监视,看到实参结构变量student的内存地址是0x003af858 
  cout << student.number << endl;//这里发现 结构Student成员变量number值因为调用函数func1而变成2000
  cout << student.name << endl;  //这里发现 结构Student成员变量name值因为调用函数func1变成“lisi”
}

可以看到,调用函数func2之前,实参结构变量student的内存地址是0x003af858

调用函数func2,进入函数内部,发现形参结构变量temp2的内存地址仍然是0x003af858

交互成功的原因:和上面引用引用传递类似,同样是将地址传进去了,直接对地址进行操作,在函数func2中直接修改了地址中的内容,函数外部对象的值同样被修改了,效率也很高。

小结:

引用调用和指针调用的效率明显高于传值调用,在C++中,更习惯用引用类型的形参来取代指针类型的形参。


二、权限修饰符

C++有三种权限修饰符:public、private、protected

  • public:公有权限,可以被任意实体所访问;
  • protected:保护权限,只允许本类或子类的成员函数访问;
  • private:私有权限,只允许本类的成员函数访问。
struct Teacher
{
public: 
  int number;
  char name[100];
  void num()
  {
    number++;
    age = 30;   //内部成员函数中可以访问私有成员变量
  }
private:
  int age;
};
int main2()
{
  Teacher teacher;
  teacher.number = 1001;     //因为number是公有成员变量,所以外界可以直接访问
  //teacher.age;             //不可调用访问
}

三、类简介

类:与结构一样也是用户自定义的数据类型,类和结构的主要区别如下:

  1. 类这个概念只存在于C++中,C中是没有类这个概念的。
  2. 结构用Struct定义,类用Class定义。

C中,定义一个属于该结构的变量,叫结构变量;而在C++中,定义一个属于该类的变量,叫对象(也可以理解为变量)。结构变量也好,对象也罢,他们都是一块能够存储数据并且具有某种类型的内存空间,说白了他们就是一块内存,这个内存中存着很多东西

我们将上面的<<二、public和private权限修饰符>>中的结构Teacher定义成类看一下:

class Teacher
{
public: //结构成员缺省都有public属性,所以可以省略public
  int number;
  char name[100];
  void num()
  {
    number++;
    age = 30;   //内部成员函数中可以访问私有成员变量
  }
private:
  int age;
};
int main2()
{
  Teacher teacher;
  teacher.number = 1001;   //这里仍然可以和定义结构一样正常调用成员变量并赋值
}

从上面的例子中,我们可以看出结构和类的作用应该是极其相似的,那么两者有什么区别呢?

1、从访问权限角度来看: 结构体和类具有不同的默认访问控制属性

C++结构体Struct中,那些缺省(未定义的数据类型)的成员变量和成员函数,默认访问级别是public属性,在外部都可以直接调用。

C++Class中,那些缺省(未定义的数据类型)的成员变量和成员函数,默认访问级别是private属性,外界是访问不了的。

为了弥补这个问题,我们不管是定义类还是定义结构,全部明确定义上其访问属性(public、private),那么区别也就不是区别了。

2、从继承角度来看:

C++结构体中,默认是public继承(子类可以访问父类中成员);

C++类中,默认是private继承(子类不可以访问父类中成员)。

为了弥补这个问题,我们不管是继承类还是继承结构,全部明确继承属性(public、private),那么区别也就不是区别了。


四、类的组织

书写规范:

类的定义代码会放在一个.h头文件中,头文件名可以跟类名相同,student.h

类的实现代码会放在一个.cpp源文件中,student.cpp


下雨天,最惬意的事莫过于躺在床上静静听雨,雨中入眠,连梦里也长出青苔。


目录
相关文章
|
3月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
90 0
|
3月前
|
存储 编译器 程序员
c++的类(附含explicit关键字,友元,内部类)
本文介绍了C++中类的核心概念与用法,涵盖封装、继承、多态三大特性。重点讲解了类的定义(`class`与`struct`)、访问限定符(`private`、`public`、`protected`)、类的作用域及成员函数的声明与定义分离。同时深入探讨了类的大小计算、`this`指针、默认成员函数(构造函数、析构函数、拷贝构造、赋值重载)以及运算符重载等内容。 文章还详细分析了`explicit`关键字的作用、静态成员(变量与函数)、友元(友元函数与友元类)的概念及其使用场景,并简要介绍了内部类的特性。
169 0
|
5月前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
176 12
|
6月前
|
编译器 C++
类和对象(下)C++
本内容主要讲解C++中的初始化列表、类型转换、静态成员、友元、内部类、匿名对象及对象拷贝时的编译器优化。初始化列表用于成员变量定义初始化,尤其对引用、const及无默认构造函数的类类型变量至关重要。类型转换中,`explicit`可禁用隐式转换。静态成员属类而非对象,受访问限定符约束。内部类是独立类,可增强封装性。匿名对象生命周期短,常用于临时场景。编译器会优化对象拷贝以提高效率。最后,鼓励大家通过重复练习提升技能!
|
7月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
6月前
|
设计模式 安全 C++
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
128 16
|
7月前
|
编译器 C语言 C++
类和对象的简述(c++篇)
类和对象的简述(c++篇)
|
6月前
|
编译器 C++
类和对象(中 )C++
本文详细讲解了C++中的默认成员函数,包括构造函数、析构函数、拷贝构造函数、赋值运算符重载和取地址运算符重载等内容。重点分析了各函数的特点、使用场景及相互关系,如构造函数的主要任务是初始化对象,而非创建空间;析构函数用于清理资源;拷贝构造与赋值运算符的区别在于前者用于创建新对象,后者用于已存在的对象赋值。同时,文章还探讨了运算符重载的规则及其应用场景,并通过实例加深理解。最后强调,若类中存在资源管理,需显式定义拷贝构造和赋值运算符以避免浅拷贝问题。
|
6月前
|
存储 编译器 C++
类和对象(上)(C++)
本篇内容主要讲解了C++中类的相关知识,包括类的定义、实例化及this指针的作用。详细说明了类的定义格式、成员函数默认为inline、访问限定符(public、protected、private)的使用规则,以及class与struct的区别。同时分析了类实例化的概念,对象大小的计算规则和内存对齐原则。最后介绍了this指针的工作机制,解释了成员函数如何通过隐含的this指针区分不同对象的数据。这些知识点帮助我们更好地理解C++中类的封装性和对象的实现原理。
|
6月前
|
安全 C++
【c++】继承(继承的定义格式、赋值兼容转换、多继承、派生类默认成员函数规则、继承与友元、继承与静态成员)
本文深入探讨了C++中的继承机制,作为面向对象编程(OOP)的核心特性之一。继承通过允许派生类扩展基类的属性和方法,极大促进了代码复用,增强了代码的可维护性和可扩展性。文章详细介绍了继承的基本概念、定义格式、继承方式(public、protected、private)、赋值兼容转换、作用域问题、默认成员函数规则、继承与友元、静态成员、多继承及菱形继承问题,并对比了继承与组合的优缺点。最后总结指出,虽然继承提高了代码灵活性和复用率,但也带来了耦合度高的问题,建议在“has-a”和“is-a”关系同时存在时优先使用组合。
345 6