☆打卡算法☆LeetCode 208. 实现 Trie (前缀树) 算法解析

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: ☆打卡算法☆LeetCode 208. 实现 Trie (前缀树) 算法解析

大家好,我是小魔龙,Unity3D软件工程师,VR、AR,虚拟仿真方向,不定时更新软件开发技巧,生活感悟,觉得有用记得一键三连哦。

一、题目

1、算法题目

“实现Trie类,Trie类是一种树形数据结构,用于高效储存和检索字符串数据集中的键。”

2、题目描述

Trie(发音类似 "try")或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。

请你实现 Trie 类:

  • Trie() 初始化前缀树对象。
  • void insert(String word) 向前缀树中插入字符串 word 。
  • boolean search(String word) 如果字符串 word 在前缀树中,返回 true(即,在检索之前已经插入);否则,返回 false 。
  • boolean startsWith(String prefix) 如果之前已经插入的字符串 word 的前缀之一为 prefix ,返回 true ;否则,返回 false 。
示例 1:
输入
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
输出
[null, null, true, false, true, null, true]
解释
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple");   // 返回 True
trie.search("app");     // 返回 False
trie.startsWith("app"); // 返回 True
trie.insert("app");
trie.search("app");     // 返回 True
示例 2:

二、解题

1、思路分析

题意要求实现一个Trie 类,也就是前缀树,前缀树是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。

Trie是一颗非典型的多叉树模型,也就是每个节点的分支数量可能为多个。

之所以说是非典型的树,是因为它跟一般的多叉树不一样,一般的多叉树的节点是有一个节点值,还有一个指向子节点的指针。

而Trie的节点有一个标记值,标记该节点是否是一个串的结束,还有一个字母映射表。

Trie为什么要这么设计呢,Trie的节点值并没有直接保存字符值的数据,而是用了一个字母映射表,字母映射表中保存了对当前节点而言下一个可能出现的所有字符的链接,比如下面三个单词"sea","sells","she"在Trie的样子:

1702382780314.jpg

Trie中一般含有大量的空链接,因此在绘制一颗前缀树通常忽略空链接,也就是这样:

1702382802385.jpg

接下来就来实现对Trie的一些常用操作方法吧。

首先是插入字符串,有两种情况:

  • 1、子节点存在,指针移动到子节点,继续处理下一个字符
  • 2、子节点不存在,创建一个新的节点,然后指针移动到子节点,继续搜序偶下一个字符

重复以上步骤,直到处理字符串的最后一个字符,将当前节点标记为字符串的结尾。

查找前缀,也有两种情况:

  • 1、子节点存在,指针移动到子节点,继续搜索下一个字符
  • 2、子节点不存在,说明字典树中不包含该前缀,返回空指针

重复以上步骤,直到返回空指针或搜索完前缀的最后一个字符。

2、代码实现

代码参考:

class Trie {
    private Trie[] children;
    private boolean isEnd;
    public Trie() {
        children = new Trie[26];
        isEnd = false;
    }
    public void insert(String word) {
        Trie node = this;
        for (int i = 0; i < word.length(); i++) {
            char ch = word.charAt(i);
            int index = ch - 'a';
            if (node.children[index] == null) {
                node.children[index] = new Trie();
            }
            node = node.children[index];
        }
        node.isEnd = true;
    }
    public boolean search(String word) {
        Trie node = searchPrefix(word);
        return node != null && node.isEnd;
    }
    public boolean startsWith(String prefix) {
        return searchPrefix(prefix) != null;
    }
    private Trie searchPrefix(String prefix) {
        Trie node = this;
        for (int i = 0; i < prefix.length(); i++) {
            char ch = prefix.charAt(i);
            int index = ch - 'a';
            if (node.children[index] == null) {
                return null;
            }
            node = node.children[index];
        }
        return node;
    }
}

1702382826300.jpg

3、时间复杂度

时间复杂度:O(1)

时间复杂度初始为O(1),其余操作为O(|S|),其中|S|是每次插入或查询字符串的长度。

空间复杂度:O(|T|·∑)

其中|T|是所有插入字符串的长度和,∑为字符集的大小。

三、总结

通过以上介绍和代码实现我们可以总结出 Trie 的几点性质:

  • Trie 的形状和单词的插入或删除顺序无关,也就是说对于任意给定的一组单词,Trie 的形状都是唯一的。
  • 查找或插入一个长度为 L 的单词,访问 next 数组的次数最多为 L+1,和 Trie 中包含多少个单词无关。
  • Trie 的每个结点中都保留着一个字母表,这是很耗费空间的。如果 Trie 的高度为 n,字母表的大小为 m,最坏的情况是 Trie 中还不存在前缀相同的单词,那空间复杂度就为 O(mn)。

最后,关于 Trie 的应用场景,希望你能记住 8 个字:一次建树,多次查询。

相关文章
|
26天前
|
负载均衡 算法 Java
Spring Cloud全解析:负载均衡算法
本文介绍了负载均衡的两种方式:集中式负载均衡和进程内负载均衡,以及常见的负载均衡算法,包括轮询、随机、源地址哈希、加权轮询、加权随机和最小连接数等方法,帮助读者更好地理解和应用负载均衡技术。
|
6天前
|
算法 调度
操作系统的心脏:深入解析进程调度算法
本文旨在深入探讨现代操作系统中的核心功能之一——进程调度。进程调度算法是操作系统用于分配CPU时间片给各个进程的机制,以确保系统资源的高效利用和公平分配。本文将详细介绍几种主要的进程调度算法,包括先来先服务(FCFS)、短作业优先(SJF)、时间片轮转(RR)以及优先级调度(PS)。我们将分析每种算法的基本原理、优缺点及其适用场景。同时,本文还将讨论多级反馈队列(MFQ)调度算法,并探讨这些算法在实际应用中的表现及未来发展趋势。通过深入解析这些内容,希望能够为读者提供对操作系统进程调度机制的全面理解。
|
8天前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
25 2
|
2月前
|
算法
测试工程师的技能升级:LeetCode算法挑战与职业成长
这篇文章通过作者亲身体验LeetCode算法题的过程,探讨了测试工程师学习算法的重要性,并强调了算法技能对于测试职业成长的必要性。
49 1
测试工程师的技能升级:LeetCode算法挑战与职业成长
|
1月前
|
机器学习/深度学习 数据采集 存储
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
165 1
|
2月前
|
算法 JavaScript 前端开发
国标非对称加密:RSA算法、非对称特征、js还原、jsencrypt和rsa模块解析
国标非对称加密:RSA算法、非对称特征、js还原、jsencrypt和rsa模块解析
131 1
|
2月前
|
缓存 算法 前端开发
深入理解缓存淘汰策略:LRU和LFU算法的解析与应用
【8月更文挑战第25天】在计算机科学领域,高效管理资源对于提升系统性能至关重要。内存缓存作为一种加速数据读取的有效方法,其管理策略直接影响整体性能。本文重点介绍两种常用的缓存淘汰算法:LRU(最近最少使用)和LFU(最不经常使用)。LRU算法依据数据最近是否被访问来进行淘汰决策;而LFU算法则根据数据的访问频率做出判断。这两种算法各有特点,适用于不同的应用场景。通过深入分析这两种算法的原理、实现方式及适用场景,本文旨在帮助开发者更好地理解缓存管理机制,从而在实际应用中作出更合理的选择,有效提升系统性能和用户体验。
82 1
|
2月前
|
机器学习/深度学习 算法 TensorFlow
【深度学习】深度学习语音识别算法的详细解析
深度学习语音识别算法是一种基于人工神经网络的语音识别技术,其核心在于利用深度神经网络(Deep Neural Network,DNN)自动从语音信号中学习有意义的特征,并生成高效的语音识别模型。以下是对深度学习语音识别算法的详细解析
57 5
|
2月前
|
JavaScript 算法 前端开发
"揭秘Vue.js的高效渲染秘诀:深度解析Diff算法如何让前端开发快人一步"
【8月更文挑战第20天】Vue.js是一款备受欢迎的前端框架,以其声明式的响应式数据绑定和组件化开发著称。在Vue中,Diff算法是核心之一,它高效计算虚拟DOM更新时所需的最小实际DOM变更,确保界面快速准确更新。算法通过比较新旧虚拟DOM树的同层级节点,递归检查子节点,并利用`key`属性优化列表更新。虽然存在局限性,如难以处理跨层级节点移动,但Diff算法仍是Vue高效更新机制的关键,帮助开发者构建高性能Web应用。
53 1
|
2月前
|
机器学习/深度学习 自然语言处理 负载均衡
揭秘混合专家(MoE)模型的神秘面纱:算法、系统和应用三大视角全面解析,带你领略深度学习领域的前沿技术!
【8月更文挑战第19天】在深度学习领域,混合专家(Mixture of Experts, MoE)模型通过整合多个小型专家网络的输出以实现高性能。从算法视角,MoE利用门控网络分配输入至专家网络,并通过组合机制集成输出。系统视角下,MoE需考虑并行化、通信开销及负载均衡等优化策略。在应用层面,MoE已成功应用于Google的BERT模型、Facebook的推荐系统及Microsoft的语音识别系统等多个场景。这是一种强有力的工具,能够解决复杂问题并提升效率。
57 2

推荐镜像

更多
下一篇
无影云桌面