先聊聊「内存分配」,再聊聊Go的「逃逸分析」。

简介: 今天和大家聊聊Go语言的「内存分配」和「逃逸分析」。

今天和大家聊聊Go语言的「内存分配」和「逃逸分析」。

要搞清楚GO的逃逸分析一定要先搞清楚内存分配和堆栈:

内存既可以分配到堆中,也可以分配到栈中。

GO语言是如何进行内存分配的呢?其设计初衷和实现原理是什么呢?

要搞清楚上面的问题,我们先来聊一下内存管理和堆、栈的知识点:

内存管理

内存管理主要包括两个动作:分配与释放。逃逸分析就是服务于内存分配的,而内存的释放由GC负责。

在Go语言中,栈的内存是由编译器自动进行分配和释放的,栈区往往存储着函数参数、局部变量和调用函数帧,它们随着函数的创建而分配,随着函数的退出而销毁

Go应用程序运行时,每个 goroutine 都维护着一个自己的栈区,这个栈区只能自己使用不能被其他 goroutine 使用。栈是调用栈(call stack)的简称。一个栈通常又包含了许多栈帧(stack frame),它描述的是函数之间的调用关系

与栈不同的是,堆区的内存一般由编译器和工程师自己共同进行管理分配,交给 Runtime GC 来释放。在堆上分配时,必须找到一块足够大的内存来存放新的变量数据。后续释放时,垃圾回收器扫描堆空间寻找不再被使用的对象。

我们可以简单理解为:我们用GO语言开发过程中,要考虑的内存管理只是针对堆内存而言的。

程序在运行期间可以主动从堆上申请内存,这些内存通过Go的内存分配器分配,并由垃圾收集器回收。

为了方便大家理解,我们再从以下角度对比一下堆栈:

堆和栈的对比

加锁

  • 栈不需要加锁:每个goroutine都独享自己的栈空间,这就意味着栈上的内存操作是不需要加锁的。
  • 堆有时需要加锁:堆上的内存,有时需要加锁防止多线程冲突

延伸知识点:为什么堆上的内存有时需要加锁?而不是一直需要加锁呢?

因为Go的内存分配策略学习了TCMalloc的线程缓存思想,他为每个处理器分配了一个mcache,注意:从mcache分配内存也是无锁的。

关注我,后面带大家详解这部分知识点。

性能

  • 栈内存管理 性能好:栈上的内存,它的分配与释放非常高效的。简单地说,它只需要两个CPU指令:一个是分配入栈,另外一个是栈内释放。只需要借助于栈相关寄存器即可完成。
  • 堆内存管理 性能差:对于程序堆上的内存回收,还需要有标记清除阶段,例如Go采用的三色标记法。

缓存策略

  • 栈缓存性能更好
  • 堆缓存性能较差

原因是:栈内存能更好地利用CPU的缓存策略,因为栈空间相较于堆来说是更连续的。

下面就介绍今天的重头戏了:

逃逸分析

上面说了这么多堆和栈的知识点,目的是为了让大家更好的理解逃逸分析

正如上面讲的,相比于把内存分配到堆中,分配到栈中优势更明显。

Go语言也是这么做的:Go编译器会尽可能将变量分配到到栈上。

但是,在函数返回后无法证明变量未被引用,则该变量将被分配到堆上,该变量不随函数栈的回收而回收。以此避免悬挂指针(dangling pointer)的问题。

另外,如果局部变量占用内存非常大,也会将其分配在堆上。

Go是如何确定内存是分配到栈上还是堆上的呢?

答案就是:逃逸分析。

编译器通过逃逸分析技术去选择堆或者栈,逃逸分析的基本思想如下:检查变量的生命周期是否是完全可知的,如果通过检查,则在栈上分配。否则,就是所谓的逃逸,必须在堆上进行分配。

逃逸分析原则

Go语言虽然没有明确说明逃逸分析原则,但是有以下几点准则,是可以参考的。

  • 不同于JAVA JVM的运行时逃逸分析,Go的逃逸分析是在编译期完成的:编译期无法确定的参数类型必定放到堆中;
  • 如果变量在函数外部存在引用,则必定放在堆中;
  • 如果变量占用内存较大时,则优先放到堆中;
  • 如果变量在函数外部没有引用,则优先放到栈中;

逃逸分析举例

我们使用这个命令来查看逃逸分析的结果: go build -gcflags '-m -m -l'

1.参数是interface类型

package main
import "fmt"
func main() {
a := 666
fmt.Println(a)
}

运行结果

image.png

原因分析

因为Println(a ...interface{})的参数是interface{}类型,编译期无法确定其具体的参数类型,所以内存分配到堆中。

image.png

2. 变量在函数外部有引用

package main
func test() *int {
a := 10
return &a
}
func main() {
_ = test()
}

运行结果

image.png

原因分析

变量a在函数外部存在引用。

我们来分析一下执行过程:当函数执行完毕,对应的栈帧就被销毁,但是引用已经被返回到函数之外。如果这时外部通过引用地址取值,虽然地址还在,但是这块内存已经被释放回收了,这就是非法内存。

为了避免上述非法内存的情况,在这种情况下变量的内存分配必须分配到堆上。

3. 变量内存占用较大

package main
func test() {
a := make([]int, 10000, 10000)
for i := 0; i < 10000; i++ {
a[i] = i
}
}
func main() {
test()
}

运行结果

image.png

原因分析

我们定义了一个容量为10000的int类型切片,发生了逃逸,内存分配到了堆上(heap)。

注意看:

我们再简单修改一下代码,将切片的容量和长度修改为1,再次查看逃逸分析的结果,我们发现,没有发生逃逸,内存默认分类到了栈上。

image.png

所以,当变量占用内存较大时,会发生逃逸分析,将内存分配到堆上。

4. 变量大小不确定时

我们再简单修改一下上面的代码:

package main
func test() {
l := 1
a := make([]int, l, l)
for i := 0; i < l; i++ {
a[i] = i
}
}
func main() {
test()
}

运行结果

image.png

原因分析

我们通过控制台的输出结果可以很明显的看出:发生了逃逸,分配到了heap堆中。

原因是这样的:

我们虽然在代码段中给变量 l 赋值了1,但是编译期间只能识别到初始化int类型切片时,传入的长度和容量是变量l,编译期并不能确定变量l的值,所以发生了逃逸,会把内存分配到堆中。

思考题

好了,我们举了4个逃逸分析的经典案例,相信聪明的你已经理解了逃逸分析的作用和发生逃逸的场景。

我们来想一下,在理解逃逸分析的原理之后,在开发的过程中如何更好的编码,进而提高程序的效率,更好的利用内存呢?

如何实践?

理解逃逸分析一定能帮助我们写出更好的程序。知道变量分配在栈堆之上的差别后,我们就要尽量写出分配在栈上的代码。因为堆上的变量变少后,可以减轻内存分配的开销,减小GC的压力,提高程序的运行速度。

但是我们也要有过犹不及的指导思想。

我认为没有一成不变的开发模式,我们一定是在不断的需求变化,业务变化中求得平衡的:

举个栗子

举个日常开发中函数传参例子:

有些场景下我们不应该传递结构体指针,而应该直接传递结构体。

为什么会这样呢?虽然直接传递结构体需要值拷贝,但是这是在栈上完成的操作,开销远比变量逃逸后动态地在堆上分配内存少的多。

当然这种做法不是绝对的,要根据场景去分析:

  • 如果结构体较大,传递结构体指针更合适,因为指针类型相比值类型能节省大量的内存空间
  • 如果结构体较小,传递结构体更适合,因为在栈上分配内存,可以有效减少GC压力

总结

通过本文的介绍,相信你一定加深了堆栈的理解;搞清楚逃逸分析的作用和原理之后能够指导我们写出更优雅的代码。

我们在日常开发中,要根据实际场景考虑,如何将内存尽量分配到栈中,减少GC的压力,提高性能。

如何找到应用开发效率、程序运行效率、对机器的压力及负载的平衡点,是程序员进阶之旅中的必修课。

相关文章
|
5月前
|
存储 弹性计算 缓存
阿里云服务器ECS经济型、通用算力、计算型、通用和内存型选购指南及使用场景分析
本文详细解析阿里云ECS服务器的经济型、通用算力型、计算型、通用型和内存型实例的区别及适用场景,涵盖性能特点、配置比例与实际应用,助你根据业务需求精准选型,提升资源利用率并降低成本。
442 3
|
6月前
|
人工智能 数据可视化 编译器
Go interface实现分析
本文深入探讨了Go语言中接口的定义、实现及性能影响。接口作为一种“约定”,包含方法签名集合,无需依赖具体类型即可调用方法,隐藏了内部实现细节。文章分析了接口的两种实现方式(iface和eface)、按值与按指针实现的区别,以及nil接口与普通nil的区别。同时,通过反汇编代码对比了接口动态调用与类型直接调用的性能差异,指出接口调用存在内存逃逸和无法内联的问题。最后总结了接口的优势与局限性,强调在实际开发中需根据场景合理选择是否使用接口。
168 13
|
1月前
|
设计模式 缓存 Java
【JUC】(4)从JMM内存模型的角度来分析CAS并发性问题
本篇文章将从JMM内存模型的角度来分析CAS并发性问题; 内容包含:介绍JMM、CAS、balking犹豫模式、二次检查锁、指令重排问题
106 1
|
4月前
|
存储 人工智能 自然语言处理
AI代理内存消耗过大?9种优化策略对比分析
在AI代理系统中,多代理协作虽能提升整体准确性,但真正决定性能的关键因素之一是**内存管理**。随着对话深度和长度的增加,内存消耗呈指数级增长,主要源于历史上下文、工具调用记录、数据库查询结果等组件的持续积累。本文深入探讨了从基础到高级的九种内存优化技术,涵盖顺序存储、滑动窗口、摘要型内存、基于检索的系统、内存增强变换器、分层优化、图形化记忆网络、压缩整合策略以及类操作系统内存管理。通过统一框架下的代码实现与性能评估,分析了每种技术的适用场景与局限性,为构建高效、可扩展的AI代理系统提供了系统性的优化路径和技术参考。
249 4
AI代理内存消耗过大?9种优化策略对比分析
|
6月前
|
Go 开发者
Go语言内存共享与扩容机制 -《Go语言实战指南》
本文深入探讨了Go语言中切片的内存共享机制与自动扩容策略。切片作为动态数组的抽象,其底层结构包含指针、长度和容量。多个切片可能共享同一底层数组,修改一个切片可能影响其他切片。当切片容量不足时,`append`会触发扩容,新容量按指数增长以优化性能。为避免共享导致的副作用,可通过`copy`创建独立副本或在函数中使用只读方式处理。最后总结了最佳实践,帮助开发者高效使用切片,写出更优代码。
186 10
|
6月前
|
Go 调度
GO语言函数的内部运行机制分析
以上就是Go语言中函数的内部运行机制的概述,展示了函数在Go语言编程中如何发挥作用,以及Go如何使用简洁高效的设计,使得代码更简单,更有逻辑性,更易于理解和维护。尽管这些内容深入了一些底层的概念,但我希望通过这种方式,将这些理论知识更生动、更形象地带给你,让你在理解的同时找到编程的乐趣。
125 5
|
7月前
|
存储 监控 算法
员工行为监控软件中的 Go 语言哈希表算法:理论、实现与分析
当代企业管理体系中,员工行为监控软件已逐步成为维护企业信息安全、提升工作效能的关键工具。这类软件能够实时记录员工操作行为,为企业管理者提供数据驱动的决策依据。其核心支撑技术在于数据结构与算法的精妙运用。本文聚焦于 Go 语言中的哈希表算法,深入探究其在员工行为监控软件中的应用逻辑与实现机制。
189 14
|
8月前
|
存储 Java
课时4:对象内存分析
接下来对对象实例化操作展开初步分析。在整个课程学习中,对象使用环节往往是最棘手的问题所在。
|
8月前
|
Java 编译器 Go
go的内存逃逸分析
内存逃逸分析是Go编译器在编译期间根据变量的类型和作用域,确定变量分配在堆上还是栈上的过程。如果变量需要分配在堆上,则称作内存逃逸。Go语言有自动内存管理(GC),开发者无需手动释放内存,但编译器需准确分配内存以优化性能。常见的内存逃逸场景包括返回局部变量的指针、使用`interface{}`动态类型、栈空间不足和闭包等。内存逃逸会影响性能,因为操作堆比栈慢,且增加GC压力。合理使用内存逃逸分析工具(如`-gcflags=-m`)有助于编写高效代码。
174 2
|
9月前
|
存储 缓存 监控
企业监控软件中 Go 语言哈希表算法的应用研究与分析
在数字化时代,企业监控软件对企业的稳定运营至关重要。哈希表(散列表)作为高效的数据结构,广泛应用于企业监控中,如设备状态管理、数据分类和缓存机制。Go 语言中的 map 实现了哈希表,能快速处理海量监控数据,确保实时准确反映设备状态,提升系统性能,助力企业实现智能化管理。
192 3

热门文章

最新文章