Flink CDC的工作原理是通过监听数据库的变更事件

简介: Flink CDC的工作原理是通过监听数据库的变更事件

Flink CDC的工作原理是通过监听数据库的变更事件,然后将这些变更事件应用到视图(View)上,从而实现数据的同步。如果你的视图被优化拆分为两个部分,那么Flink CDC需要分别对这两个部分进行同步。

在Flink中,视图(View)是一个虚拟表,它基于其他表的查询结果生成。视图可以被看作是一个预定义的查询语句的结果集。因此,如果你想让Flink CDC共用一个视图,你需要确保这个视图能够包含两个部分的变更数据。

具体来说,你可以考虑以下几种方式:

  1. 修改视图的定义:你可以尝试修改视图的定义,使其能够包含两个部分的变更数据。例如,你可以将两个部分的变更数据合并到一个表中,然后基于这个表创建视图。

  2. 使用联合(UNION)查询:你可以使用联合(UNION)查询来组合两个部分的变更数据,然后基于这个联合查询结果创建视图。

  3. 使用子查询:你可以使用子查询来获取两个部分的变更数据,然后基于这个子查询结果创建视图。

请注意,以上方法可能需要你修改数据库的架构,或者增加一些额外的数据转换逻辑。在实际操作时,你需要根据具体情况来决定哪种方法最适合你。

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
目录
相关文章
|
4月前
|
Java 关系型数据库 数据库
怎么保障数据库在凭据变更过程中的安全与稳定?
本文介绍了在Spring应用中实现RDS数据源账密运行时轮转的方案,通过集成KMS与Nacos,实现数据库凭据的加密托管、动态更新与无缝切换,保障应用在凭据变更过程中的安全与稳定。适用于使用Java语言开发的Spring Boot或Spring Cloud应用,支持多种数据库类型,如MySQL、SQL Server、PostgreSQL等。
|
存储 监控 数据处理
flink 向doris 数据库写入数据时出现背压如何排查?
本文介绍了如何确定和解决Flink任务向Doris数据库写入数据时遇到的背压问题。首先通过Flink Web UI和性能指标监控识别背压,然后从Doris数据库性能、网络连接稳定性、Flink任务数据处理逻辑及资源配置等方面排查原因,并通过分析相关日志进一步定位问题。
950 61
|
11月前
|
数据管理 关系型数据库 MySQL
数据管理服务DMS支持MySQL数据库的无锁结构变更
本文介绍了使用Sysbench准备2000万数据并进行全表字段更新的操作。通过DMS的无锁变更功能,可在不锁定表的情况下完成结构修改,避免了传统方法中可能产生的锁等待问题。具体步骤包括:准备数据、提交审批、执行变更及检查表结构,确保变更过程高效且不影响业务运行。
630 2
|
存储 物联网 大数据
探索阿里云 Flink 物化表:原理、优势与应用场景全解析
阿里云Flink的物化表是流批一体化平台中的关键特性,支持低延迟实时更新、灵活查询性能、无缝流批处理和高容错性。它广泛应用于电商、物联网和金融等领域,助力企业高效处理实时数据,提升业务决策能力。实践案例表明,物化表显著提高了交易欺诈损失率的控制和信贷审批效率,推动企业在数字化转型中取得竞争优势。
492 16
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
679 9
|
安全 数据库 数据安全/隐私保护
数据库 变更和版本控制管理工具 --Bytebase 安装部署
数据库 变更和版本控制管理工具 --Bytebase 安装部署
1047 0
|
分布式计算 监控 大数据
大数据-129 - Flink CEP 详解 Complex Event Processing - 复杂事件处理
大数据-129 - Flink CEP 详解 Complex Event Processing - 复杂事件处理
306 0
|
存储 SQL 分布式计算
大数据-127 - Flink State 04篇 状态原理和原理剖析:状态存储 Part2
大数据-127 - Flink State 04篇 状态原理和原理剖析:状态存储 Part2
157 0
|
4月前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
181 3
|
4月前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。