【MySQL】Mysql索引失效场景(15个必知)(一)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 【MySQL】Mysql索引失效场景(15个必知)(一)

【MySQL】Mysql索引失效场景(15个必知)

背景

无论你是技术大佬,还是刚入行的小白,时不时都会踩到Mysql数据库不走索引的坑。

常见的现象就是:明明在字段上添加了索引,但却并未生效。

前些天就遇到一个稍微特殊的场景,同一条SQL语句,在某些参数下生效,在某些参数下不生效,这是为什么呢?

另外,无论是面试或是日常,Mysql索引失效的通常情况都应该了解和学习。

为了方便学习和记忆,这篇文件将常见的15种不走索引情况进行汇总,并以实例展示,帮助大家更好地避免踩坑。建议收藏,以备不时之需。

数据库及索引准备

创建表结构

为了逐项验证索引的使用情况,我们先准备一张表t_user:


CREATE TABLE `t_user` (
  `id` int(11) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
  `id_no` varchar(18) CHARACTER SET utf8mb4 COLLATE utf8mb4_bin DEFAULT NULL COMMENT '身份编号',
  `username` varchar(32) CHARACTER SET utf8mb4 COLLATE utf8mb4_bin DEFAULT NULL COMMENT '用户名',
  `age` int(11) DEFAULT NULL COMMENT '年龄',
  `create_time` datetime DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  PRIMARY KEY (`id`),
  KEY `union_idx` (`id_no`,`username`,`age`),
  KEY `create_time_idx` (`create_time`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin;

在上述表结构中有三个索引:

  • id:为数据库主键;
  • union_idx:为id_no、username、age构成的联合索引;
  • create_time_idx:是由create_time构成的普通索引;

初始化数据

初始化数据分两部分:基础数据和批量导入数据。

基础数据insert了4条数据,其中第4条数据的创建时间为未来的时间,用于后续特殊场景的验证:


INSERT INTO `t_user` (`id`, `id_no`, `username`, `age`, `create_time`) VALUES (null, '1001', 'Tom1', 11, '2022-02-27 09:04:23');
INSERT INTO `t_user` (`id`, `id_no`, `username`, `age`, `create_time`) VALUES (null, '1002', 'Tom2', 12, '2022-02-26 09:04:23');
INSERT INTO `t_user` (`id`, `id_no`, `username`, `age`, `create_time`) VALUES (null, '1003', 'Tom3', 13, '2022-02-25 09:04:23');
INSERT INTO `t_user` (`id`, `id_no`, `username`, `age`, `create_time`) VALUES (null, '1004', 'Tom4', 14, '2023-02-25 09:04:23');

除了基础数据,还有一条存储过程及其调用的SQL,方便批量插入数据,用来验证数据比较多的场景:


-- 删除历史存储过程
DROP PROCEDURE IF EXISTS `insert_t_user`
-- 创建存储过程
delimiter $
CREATE PROCEDURE insert_t_user(IN limit_num int)
BEGIN
  DECLARE i INT DEFAULT 10;
    DECLARE id_no varchar(18) ;
    DECLARE username varchar(32) ;
    DECLARE age TINYINT DEFAULT 1;
    WHILE i < limit_num DO
        SET id_no = CONCAT("NO", i);
        SET username = CONCAT("Tom",i);
        SET age = FLOOR(10 + RAND()*2);
        INSERT INTO `t_user` VALUES (NULL, id_no, username, age, NOW());
        SET i = i + 1;
    END WHILE;
END $
-- 调用存储过程
call insert_t_user(100);

关于存储过程的创建和存储,可暂时不执行,当用到时再执行。

数据库版本及执行计划

查看当前数据库的版本:


select version();
8.0.18

上述为本人测试的数据库版本:8.0.18。当然,以下的所有示例,大家可在其他版本进行执行验证。

查看SQL语句执行计划,一般我们都采用explain关键字,通过执行结果来判断索引使用情况。

执行示例:


explain select * from t_user where id = 1;

执行结果:

image.png

可以看到上述SQL语句使用了主键索引(PRIMARY),key_len为4;

其中key_len的含义为:表示索引使用的字节数,根据这个值可以判断索引的使用情况,特别是在组合索引的时候,判断该索引有多少部分被使用到非常重要。

做好以上数据及知识的准备,下面就开始讲解具体索引失效的实例了。

1、联合索引不满足最左匹配原则

联合索引遵从最左匹配原则,顾名思义,在联合索引中,最左侧的字段优先匹配。因此,在创建联合索引时,where子句中使用最频繁的字段放在组合索引的最左侧。

而在查询时,要想让查询条件走索引,则需满足:最左边的字段要出现在查询条件中。

实例中,union_idx联合索引组成:


KEY `union_idx` (`id_no`,`username`,`age`)

最左边的字段为id_no,一般情况下,只要保证id_no出现在查询条件中,则会走该联合索引。

示例一:


explain select * from t_user where id_no = '1002';

explain结果:

image.png

通过explain执行结果可以看出,上述SQL语句走了union_idx这条索引。

这里再普及一下key_len的计算:

  • id_no 类型为varchar(18),字符集为utf8mb4_bin,也就是使用4个字节来表示一个完整的UTF-8。此时,key_len = 18* 4 = 72;
  • 由于该字段类型varchar为变长数据类型,需要再额外添加2个字节。此时,key_len = 72 + 2 = 74;
  • 由于该字段运行为NULL(default NULL),需要再添加1个字节。此时,key_len = 74 + 1 = 75;

上面演示了key_len一种情况的计算过程,后续不再进行逐一推演,知道基本组成和原理即可,更多情况大家可自行查看。

示例二:


explain select * from t_user where id_no = '1002' and username = 'Tom2';

explain结果:

image.png

很显然,依旧走了union_idx索引,根据上面key_len的分析,大胆猜测,在使用索引时,不仅使用了id_no列,还使用了username列。

示例三:


explain select * from t_user where id_no = '1002' and age = 12;

explain结果:

image.png

走了union_idx索引,但跟示例一一样,只用到了id_no列。

当然,还有三列都在查询条件中的情况,就不再举例了。上面都是走索引的正向例子,也就是满足最左匹配原则的例子,下面来看看,不满足该原则的反向例子。

反向示例:


explain select * from t_user where username = 'Tom2' and age = 12;

explain结果:

image.png

此时,可以看到未走任何索引,也就是说索引失效了。

同样的,下面只要没出现最左条件的组合,索引也是失效的:


explain select * from t_user where age = 12;
explain select * from t_user where username = 'Tom2';

那么,第一种索引失效的场景就是:在联合索引的场景下,查询条件不满足最左匹配原则。

2、 使用了select *

在《阿里巴巴开发手册》的ORM映射章节中有一条【强制】的规范:

【强制】在表查询中,一律不要使用 * 作为查询的字段列表,需要哪些字段必须明确写明。 说明:1)增加查询分析器解析成本。2)增减字段容易与 resultMap 配置不一致。3)无用字段增加网络 消耗,尤其是 text 类型的字段。

虽然在规范手册中没有提到索引方面的问题,但禁止使用select * 语句可能会带来的附带好处就是:某些情况下可以走覆盖索引。 比如,在上面的联合索引中,如果查询条件是age或username,当使用了select * ,肯定是不会走索引的。 但如果希望根据username查询出id_no、username、age这三个结果(均为索引字段),明确查询结果字段,是可以走覆盖索引的:


explain select id_no, username, age from t_user where username = 'Tom2';
explain select id_no, username, age from t_user where age = 12;

explain结果:

image.png

无论查询条件是username还是age,都走了索引,根据key_len可以看出使用了索引的所有列。 第二种索引失效场景:在联合索引下,尽量使用明确的查询列来趋向于走覆盖索引;

这一条不走索引的情况属于优化项,如果业务场景满足,则进来促使SQL语句走索引。至于阿里巴巴开发手册中的规范,只不过是两者撞到一起了,规范本身并不是为这条索引规则而定的。

3 、索引列参与运算

直接来看示例:


explain select * from t_user where id + 1 = 2 ;

explain结果:

image.png

可以看到,即便id列有索引,由于进行了计算处理,导致无法正常走索引。 针对这种情况,其实不单单是索引的问题,还会增加数据库的计算负担。就以上述SQL语句为例,数据库需要全表扫描出所有的id字段值,然后对其计算,计算之后再与参数值进行比较。如果每次执行都经历上述步骤,性能损耗可想而知。 建议的使用方式是:先在内存中进行计算好预期的值,或者在SQL语句条件的右侧进行参数值的计算。 针对上述示例的优化如下:


-- 内存计算,得知要查询的id为1
explain select * from t_user where id = 1 ;
-- 参数侧计算
explain select * from t_user where id = 2 - 1 ;

第三种索引失效情况:索引列参与了运算,会导致全表扫描,索引失效。

4、 索引列参使用了函数

示例:


explain select * from t_user where SUBSTR(id_no,1,3) = '100';

explain结果:

image.png

上述示例中,索引列使用了函数(SUBSTR,字符串截取),导致索引失效。

此时,索引失效的原因与第三种情况一样,都是因为数据库要先进行全表扫描,获得数据之后再进行截取、计算,导致索引索引失效。同时,还伴随着性能问题。

示例中只列举了SUBSTR函数,像CONCAT等类似的函数,也都会出现类似的情况。解决方案可参考第三种场景,可考虑先通过内存计算或其他方式减少数据库来进行内容的处理。

第四种索引失效情况:索引列参与了函数处理,会导致全表扫描,索引失效。


【MySQL】Mysql索引失效场景(15个必知)(二)https://developer.aliyun.com/article/1393377

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
2月前
|
存储 SQL 关系型数据库
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
|
2月前
|
存储 关系型数据库 MySQL
MySQL数据库索引的数据结构?
MySQL中默认使用B+tree索引,它是一种多路平衡搜索树,具有树高较低、检索速度快的特点。所有数据存储在叶子节点,非叶子节点仅作索引,且叶子节点形成双向链表,便于区间查询。
92 4
|
4月前
|
存储 关系型数据库 MySQL
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
|
6月前
|
关系型数据库 MySQL 数据库
Mysql的索引
MYSQL索引主要有 : 单列索引 , 组合索引和空间索引 , 用的比较多的就是单列索引和组合索引 , 空间索引我这边没有用到过 单列索引 : 在MYSQL数据库表的某一列上面创建的索引叫单列索引 , 单列索引又分为 ● 普通索引:MySQL中基本索引类型,没有什么限制,允许在定义索引的列中插入重复值和空值,纯粹为了查询数据更快一点。 ● 唯一索引:索引列中的值必须是唯一的,但是允许为空值 ● 主键索引:是一种特殊的唯一索引,不允许有空值 ● 全文索引: 只有在MyISAM引擎、InnoDB(5.6以后)上才能使⽤用,而且只能在CHAR,VARCHAR,TEXT类型字段上使⽤用全⽂文索引。
|
2月前
|
存储 SQL 关系型数据库
MySQL 核心知识与索引优化全解析
本文系统梳理了 MySQL 的核心知识与索引优化策略。在基础概念部分,阐述了 char 与 varchar 在存储方式和性能上的差异,以及事务的 ACID 特性、并发事务问题及对应的隔离级别(MySQL 默认 REPEATABLE READ)。 索引基础部分,详解了 InnoDB 默认的 B+tree 索引结构(多路平衡树、叶子节点存数据、双向链表支持区间查询),区分了聚簇索引(数据与索引共存,唯一)和二级索引(数据与索引分离,多个),解释了回表查询的概念及优化方法,并分析了 B+tree 作为索引结构的优势(树高低、效率稳、支持区间查询)。 索引优化部分,列出了索引创建的六大原则
|
3月前
|
关系型数据库 MySQL 分布式数据库
Super MySQL|揭秘PolarDB全异步执行架构,高并发场景性能利器
阿里云瑶池旗下的云原生数据库PolarDB MySQL版设计了基于协程的全异步执行架构,实现鉴权、事务提交、锁等待等核心逻辑的异步化执行,这是业界首个真正意义上实现全异步执行架构的MySQL数据库产品,显著提升了PolarDB MySQL的高并发处理能力,其中通用写入性能提升超过70%,长尾延迟降低60%以上。
|
3月前
|
存储 关系型数据库 MySQL
MySQL覆盖索引解释
总之,覆盖索引就像是图书馆中那些使得搜索变得极为迅速和简单的工具,一旦正确使用,就会让你的数据库查询飞快而轻便。让数据检索就像是读者在图书目录中以最快速度找到所需信息一样简便。这样的效率和速度,让覆盖索引成为数据库优化师傅们手中的尚方宝剑,既能够提升性能,又能够保持系统的整洁高效。
112 9
|
4月前
|
机器学习/深度学习 关系型数据库 MySQL
对比MySQL全文索引与常规索引的互异性
现在,你或许明白了这两种索引的差异,但任何技术决策都不应仅仅基于理论之上。你可以创建你的数据库实验环境,尝试不同类型的索引,看看它们如何影响性能,感受它们真实的力量。只有这样,你才能熟悉它们,掌握什么时候使用全文索引,什么时候使用常规索引,以适应复杂多变的业务需求。
104 12
|
8月前
|
存储 关系型数据库 MySQL
MySQL索引学习笔记
本文深入探讨了MySQL数据库中慢查询分析的关键概念和技术手段。
592 81
|
5月前
|
SQL 存储 关系型数据库
MySQL选错索引了怎么办?
本文探讨了MySQL中因索引选择不当导致查询性能下降的问题。通过创建包含10万行数据的表并插入数据,分析了一条简单SQL语句在不同场景下的执行情况。实验表明,当数据频繁更新时,MySQL可能因统计信息不准确而选错索引,导致全表扫描。文章深入解析了优化器判断扫描行数的机制,指出基数统计误差是主要原因,并提供了通过`analyze table`重新统计索引信息的解决方法。
134 3

推荐镜像

更多