【Redis】Redis 删除策略

简介: 【Redis】Redis 删除策略

一、过期数据

Redis中的数据特征:  Redis是一种内存级数据库,所有数据均存放在内存中,内存中的数据可以通过TTL指令获取其状态

  • XX : 具有时效性的数据
  • -1 : 永久有效的数据
  • -2 : 已经过期的数据 或 被删除的数据 或 未定义的数据

过期的数据真的被删了吗?

image.png

redis服务器有很多操作需要执行时,CPU的压力会很大,于是redis中的策略是,在内存还够的前提下,先不急着释放已删除的数据的内存空间,先执行客户端的指令

二、数据删除策略

redis中的数据删除策略包括定时删除、惰性删除、定期删除

image.png

redis中用一个hash结构数据存放地址和过期时间,而删除策略就是基于这块hash数据结构

我们需要在内存占用与CPU占用之间寻找一种平衡,顾此失彼都会造成整体redis性能的下降,甚至引发服务器宕机或内存泄漏。CPU忙时暂且不维护内存,闲时再来进行内存释放

1. 定时删除(时间换空间)

image.png

创建一个定时器,当key设置有过期时间,且过期时间到达时,立即执行key的删除操作

  • 优点:节约内存,到时就删除,立即释放不必要的内存占用
  • 缺点:CPU压力较大,无论CPU此时负载量多高,均占用CPU,会影响redis服务器响应时间和指令吞吐量
  • 总结:用处理器性能换取存储空间(时间换空间),适用于小内存,强CPU场景

2. 惰性删除 (空间换时间)

image.png

数据到达过期时间,先不做处理。等下次访问该数据时,发现数据已过期,删除,给客户端返回不存在。只要是调用操作数据的指令,都会先执行expireIfNeeded()

  • 优点:节约CPU性能,发现不得不删除的时候才删除
  • 缺点:内存空间压力很大,出现长期占用内存的数据
  • 总结:用存储空间换取处理器性能 (空间换时间),适用于大内存,弱CPU场景

3. 定期删除(中和以上两种方案)

每个库都有独自维护的过期库expires

image.png

定期删除算法过程如下:

image.png

每秒钟执行server.hz次serverCron,serverCron会轮询所有的库,使用databasesCron方法对每个库进行检测,databasesCron会调用activeExpireCycle会对每个expire[]检测,一个expire[]检测250ms/server.hz

周期性轮询redis库中的时效性数据,采用随机抽取的策略,利用过期数据占比的方式控制删除频度

  • 特点1:CPU性能占用设置有峰值,检测频度可自定义设置
  • 特点2:内存压力不是很大,长期占用内存的冷数据会被持续清理

总结:周期性抽查存储空间(查询某个库的expires时,如果这轮删除过多,则再抽取删除一轮,如果这轮删除的很少,则去检查下一个库的expires)

4. 三种删除方案对比

内存占用 CPU占用 特征
定时删除 节约内存,无占用 不分时段占用CPU资源,频度高 时间换空间
惰性删除 内存占用严重 延时执行,CPU利用率高 空间换时间
定期删除 内存定期随机清理 每秒花费固定的CPU资源维护内存 随机抽查,重点抽查

在redis里,会使用惰性删除和定期删除两种方式

三、逐出算法

当内存被永久数据占满(删除策略只能清除过期数据),新数据进入redis时,如果内存不足怎么办?

Redis使用内存存储数据,在执行每一个命令前,会调用freeMemoryIfNeeded()检测内存是否充足。如果内存不满足新加入数据的最低存储要求,redis要临时删除一些数据为当前指令清理存储空间。清理数据的策略称为逐出算法

注意:逐出数据的过程不是100%能够清理出足够的可使用的内存空间,如果不成功则反复执行。当对所有数据尝试完毕后,如果不能达到内存清理的要求,将会出现错误信息

影响数据逐出的相关配置

  • maxmemory:redis可使用内存占物理内存的最大比例,默认为0,表示不限制redis使用内存。生产环境中根据需求设定,通常设置在50%以上
  • maxmemory-samples:每次选取待删除数据的个数,选取数据时并不会全库扫描,导致严重的性能消耗,降低读写性能。因此采用随机获取数据的方式作为待检测删除数据
  • maxmemory-policy:达到最大内存后的,对被挑选出来的数据进行删除的算法

删除算法有如下几种:

检查可能会过期的数据集server.db[i].expires内的数据

  • volatile-lru:挑选最近最少使用(最长时间不使用的)的数据淘汰,使用较多
  • volatile-lfu:挑选最近使用次数最少的数据淘汰
  • volatile-ttl :挑选将要过期的数据淘汰
  • volatile-random:任意选择数据淘汰,一般用的少

image.png

检测全库数据(所有数据集server.db[i].dict)

  • allkeys-lru:挑选最近最少使用的数据淘汰
  • allkeys-lfu:挑选最近使用次数最少的数据淘汰
  • allkeys-random:任意选择数据淘汰

放弃数据驱逐

  • no-enviction(驱逐):禁止驱逐数据(redis4.0中默认策略),会引发错误OOM(Out Of Memory)

以上的逐出算法都可在配置文件中配置

arduino

复制代码

maxmemory-policy volatile-lru

我们可以使用INFO命令输出监控信息,查询缓存int和miss的次数,根据业务需求调优Redis配置

image.png



相关文章
|
4月前
|
存储 缓存 NoSQL
工作 10 年!Redis 内存淘汰策略 LRU 和传统 LRU 差异,还傻傻分不清
小富带你深入解析Redis内存淘汰机制:LRU与LFU算法原理、实现方式及核心区别。揭秘Redis为何采用“近似LRU”,LFU如何解决频率老化问题,并结合实际场景教你如何选择合适策略,提升缓存命中率。
499 3
|
5月前
|
存储 缓存 人工智能
Redis六大常见命令详解:从set/get到过期策略的全方位解析
本文将通过结构化学习路径,帮助读者实现从命令语法掌握到工程化实践落地的能力跃迁,系统性提升 Redis 技术栈的应用水平。
|
5月前
|
存储 NoSQL 算法
应对Redis中的并发冲突:有效解决策略
以上策略各有优劣:乐观锁和悲观锁控制得当时可以很好地解决并发问题;发布/订阅模式提高了实时响应能力;Lua脚本和Redis事务保证了命令序列的原子性;分布式锁适合跨节点的并发控制;限流措施和持久化配置从系统设计层面减少并发风险;数据分片通过架构上的优化减轻单个Redis节点的负担。正确选择适合自己应用场景的策略,是解决Redis并发冲突的关键。
313 0
|
7月前
|
存储 监控 NoSQL
流量洪峰应对术:Redis持久化策略与内存压测避坑指南
本文深入解析Redis持久化策略与内存优化技巧,涵盖RDB快照机制、AOF重写原理及混合持久化实践。通过实测数据揭示bgsave内存翻倍风险、Hash结构内存节省方案,并提供高并发场景下的主从复制冲突解决策略。结合压测工具链构建与故障恢复演练,总结出生产环境最佳实践清单。
235 9
|
NoSQL Redis
Redis的数据淘汰策略有哪些 ?
Redis 提供了 8 种数据淘汰策略,分为淘汰易失数据和淘汰全库数据两大类。易失数据淘汰策略包括:volatile-lru、volatile-lfu、volatile-ttl 和 volatile-random;全库数据淘汰策略包括:allkeys-lru、allkeys-lfu 和 allkeys-random。此外,还有 no-eviction 策略,禁止驱逐数据,当内存不足时新写入操作会报错。
1073 16
|
7月前
|
消息中间件 监控 NoSQL
利用RabbitMQ与Redis实现消息的延迟传递的策略
这个系统就如同一个无懈可击的邮局,无论天气如何变换,它都能确保每一封信准时送达。通过巧妙地运用RabbitMQ的DLX和Redis的Sorted Sets,我们搭建了一座桥梁,让即时和延迟消息的传递高效且无缝对接。
130 3
|
10月前
|
NoSQL Redis
Redis的数据淘汰策略有哪些 ?
Redis 提供 8 种数据淘汰策略: 淘汰易失数据(具有过期时间的数据) 1. volatile-lru(least recently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰 2. volatile-lfu(least frequently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最不经常使用的数据淘汰 3. volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰 4. volatile-random:从已设置过期
|
10月前
|
NoSQL Redis
Redis的数据持久化策略有哪些 ?
Redis 提供了两种方式,实现数据的持久化到硬盘。 1. RDB 持久化(全量),是指在指定的时间间隔内将内存中的数据集快照写入磁盘。 2. AOF持久化(增量),以日志的形式记录服务器所处理的每一个写、删除操作 RDB和AOF一起使用, 在Redis4.0版本支持混合持久化方式 ( 设置 aof-use-rdb-preamble yes )
|
10月前
|
存储 NoSQL Redis
Redis的数据过期策略有哪些 ?
1. 惰性删除 :只会在取出 key 的时候才对数据进行过期检查。这样对 CPU 最友好,但是可能会造成太多过期 key 没有被删除。数据到达过期时间,不做处理。等下次访问该数据时,我们需要判断 a. 如果未过期,返回数据 b. 发现已过期,删除,返回nil 2. 定期删除 : 每隔一段时间抽取一批 key 执行删除过期 key 操作。并且,Redis 底层会通过限制删除操作执行的时长和频率来减少删除操作对 CPU 时间的影响。默认情况下 Redis 定期检查的频率是每秒扫描 10 次,用于定期清除过期键。当然此值还可以通过配置文件进行设置,在 redis.conf 中修改配置“hz”
|
NoSQL 算法 Redis
redis内存淘汰策略
Redis支持8种内存淘汰策略,包括noeviction、volatile-ttl、allkeys-random、volatile-random、allkeys-lru、volatile-lru、allkeys-lfu和volatile-lfu。这些策略分别针对所有键或仅设置TTL的键,采用随机、LRU(最近最久未使用)或LFU(最少频率使用)等算法进行淘汰。
354 5