Java之多线程的生产者消费者问题的详细解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 3.生产者消费者3.1生产者和消费者模式概述【应用】概述生产者消费者模式是一个十分经典的多线程协作的模式,弄懂生产者消费者问题能够让我们对多线程编程的理解更加深刻。

3.生产者消费者

3.1生产者和消费者模式概述【应用】

  • 概述
    生产者消费者模式是一个十分经典的多线程协作的模式,弄懂生产者消费者问题能够让我们对多线程编程的理解更加深刻。

所谓生产者消费者问题,实际上主要是包含了两类线程:


一类是生产者线程用于生产数据


一类是消费者线程用于消费数据


为了解耦生产者和消费者的关系,通常会采用共享的数据区域,就像是一个仓库


生产者生产数据之后直接放置在共享数据区中,并不需要关心消费者的行为


消费者只需要从共享数据区中去获取数据,并不需要关心生产者的行为Object类的等待和唤醒方法Object类的等待和唤醒方法

方法名 说明
void wait() 导致当前线程等待,直到另一个线程调用该对象的 notify()方法或 notifyAll()方法
void notify() 唤醒正在等待对象监视器的单个线程
void notifyAll() 唤醒正在等待对象监视器的所有线程


3.2生产者和消费者案例【应用】

  • 案例需求
  • 桌子类(Desk):定义表示包子数量的变量,定义锁对象变量,定义标记桌子上有无包子的变量
  • 生产者类(Cooker):实现Runnable接口,重写run()方法,设置线程任务
    1.判断是否有包子,决定当前线程是否执行
  • 2.如果有包子,就进入等待状态,如果没有包子,继续执行,生产包子
    3.生产包子之后,更新桌子上包子状态,唤醒消费者消费包子
  • 消费者类(Foodie):实现Runnable接口,重写run()方法,设置线程任务
    1.判断是否有包子,决定当前线程是否执行
  • 2.如果没有包子,就进入等待状态,如果有包子,就消费包子
    3.消费包子后,更新桌子上包子状态,唤醒生产者生产包子
  • 测试类(Demo):里面有main方法,main方法中的代码步骤如下
    创建生产者线程和消费者线程对象
  • 分别开启两个线程
  • 代码实现
public class Desk {
    //定义一个标记
    //true 就表示桌子上有汉堡包的,此时允许吃货执行
    //false 就表示桌子上没有汉堡包的,此时允许厨师执行
    public static boolean flag = false;
    //汉堡包的总数量
    public static int count = 10;
    //锁对象
    public static final Object lock = new Object();
}
public class Cooker extends Thread {
//    生产者步骤:
//            1,判断桌子上是否有汉堡包
//    如果有就等待,如果没有才生产。
//            2,把汉堡包放在桌子上。
//            3,叫醒等待的消费者开吃。
    @Override
    public void run() {
        while(true){
            synchronized (Desk.lock){
                if(Desk.count == 0){
                    break;
                }else{
                    if(!Desk.flag){
                        //生产
                        System.out.println("厨师正在生产汉堡包");
                        Desk.flag = true;
                        Desk.lock.notifyAll();
                    }else{
                        try {
                            Desk.lock.wait();
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                    }
                }
            }
        }
    }
}
public class Foodie extends Thread {
    @Override
    public void run() {
//        1,判断桌子上是否有汉堡包。
//        2,如果没有就等待。
//        3,如果有就开吃
//        4,吃完之后,桌子上的汉堡包就没有了
//                叫醒等待的生产者继续生产
//        汉堡包的总数量减一
        //套路:
            //1. while(true)死循环
            //2. synchronized 锁,锁对象要唯一
            //3. 判断,共享数据是否结束. 结束
            //4. 判断,共享数据是否结束. 没有结束
        while(true){
            synchronized (Desk.lock){
                if(Desk.count == 0){
                    break;
                }else{
                    if(Desk.flag){
                        //有
                        System.out.println("吃货在吃汉堡包");
                        Desk.flag = false;
                        Desk.lock.notifyAll();
                        Desk.count--;
                    }else{
                        //没有就等待
                        //使用什么对象当做锁,那么就必须用这个对象去调用等待和唤醒的方法.
                        try {
                            Desk.lock.wait();
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                    }
                }
            }
        }
    }
}
public class Demo {
    public static void main(String[] args) {
        /*消费者步骤:
        1,判断桌子上是否有汉堡包。
        2,如果没有就等待。
        3,如果有就开吃
        4,吃完之后,桌子上的汉堡包就没有了
                叫醒等待的生产者继续生产
        汉堡包的总数量减一*/
        /*生产者步骤:
        1,判断桌子上是否有汉堡包
        如果有就等待,如果没有才生产。
        2,把汉堡包放在桌子上。
        3,叫醒等待的消费者开吃。*/
        Foodie f = new Foodie();
        Cooker c = new Cooker();
        f.start();
        c.start();
    }
}

3.3生产者和消费者案例优化【应用】

  • 需求
  • 将Desk类中的变量,采用面向对象的方式封装起来
  • 生产者和消费者类中构造方法接收Desk类对象,之后在run方法中进行使用
  • 创建生产者和消费者线程对象,构造方法中传入Desk类对象
  • 开启两个线程
  • 代码实现
public class Desk {
    //定义一个标记
    //true 就表示桌子上有汉堡包的,此时允许吃货执行
    //false 就表示桌子上没有汉堡包的,此时允许厨师执行
    //public static boolean flag = false;
    private boolean flag;
    //汉堡包的总数量
    //public static int count = 10;
    //以后我们在使用这种必须有默认值的变量
   // private int count = 10;
    private int count;
    //锁对象
    //public static final Object lock = new Object();
    private final Object lock = new Object();
    public Desk() {
        this(false,10); // 在空参内部调用带参,对成员变量进行赋值,之后就可以直接使用成员变量了
    }
    public Desk(boolean flag, int count) {
        this.flag = flag;
        this.count = count;
    }
    public boolean isFlag() {
        return flag;
    }
    public void setFlag(boolean flag) {
        this.flag = flag;
    }
    public int getCount() {
        return count;
    }
    public void setCount(int count) {
        this.count = count;
    }
    public Object getLock() {
        return lock;
    }
    @Override
    public String toString() {
        return "Desk{" +
                "flag=" + flag +
                ", count=" + count +
                ", lock=" + lock +
                '}';
    }
}
public class Cooker extends Thread {
    private Desk desk;
    public Cooker(Desk desk) {
        this.desk = desk;
    }
//    生产者步骤:
//            1,判断桌子上是否有汉堡包
//    如果有就等待,如果没有才生产。
//            2,把汉堡包放在桌子上。
//            3,叫醒等待的消费者开吃。
    @Override
    public void run() {
        while(true){
            synchronized (desk.getLock()){
                if(desk.getCount() == 0){
                    break;
                }else{
                    //System.out.println("验证一下是否执行了");
                    if(!desk.isFlag()){
                        //生产
                        System.out.println("厨师正在生产汉堡包");
                        desk.setFlag(true);
                        desk.getLock().notifyAll();
                    }else{
                        try {
                            desk.getLock().wait();
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                    }
                }
            }
        }
    }
}
public class Foodie extends Thread {
    private Desk desk;
    public Foodie(Desk desk) {
        this.desk = desk;
    }
    @Override
    public void run() {
//        1,判断桌子上是否有汉堡包。
//        2,如果没有就等待。
//        3,如果有就开吃
//        4,吃完之后,桌子上的汉堡包就没有了
//                叫醒等待的生产者继续生产
//        汉堡包的总数量减一
        //套路:
            //1. while(true)死循环
            //2. synchronized 锁,锁对象要唯一
            //3. 判断,共享数据是否结束. 结束
            //4. 判断,共享数据是否结束. 没有结束
        while(true){
            synchronized (desk.getLock()){
                if(desk.getCount() == 0){
                    break;
                }else{
                    //System.out.println("验证一下是否执行了");
                    if(desk.isFlag()){
                        //有
                        System.out.println("吃货在吃汉堡包");
                        desk.setFlag(false);
                        desk.getLock().notifyAll();
                        desk.setCount(desk.getCount() - 1);
                    }else{
                        //没有就等待
                        //使用什么对象当做锁,那么就必须用这个对象去调用等待和唤醒的方法.
                        try {
                            desk.getLock().wait();
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                    }
                }
            }
        }
    }
}
public class Demo {
    public static void main(String[] args) {
        /*消费者步骤:
        1,判断桌子上是否有汉堡包。
        2,如果没有就等待。
        3,如果有就开吃
        4,吃完之后,桌子上的汉堡包就没有了
                叫醒等待的生产者继续生产
        汉堡包的总数量减一*/
        /*生产者步骤:
        1,判断桌子上是否有汉堡包
        如果有就等待,如果没有才生产。
        2,把汉堡包放在桌子上。
        3,叫醒等待的消费者开吃。*/
        Desk desk = new Desk();
        Foodie f = new Foodie(desk);
        Cooker c = new Cooker(desk);
        f.start();
        c.start();
    }
}

3.4阻塞队列基本使用【理解】

  • 阻塞队列继承结构

99cdbadd982e4238886726e597a920b8.png

  • 常见BlockingQueue:
    ArrayBlockingQueue: 底层是数组,有界
    LinkedBlockingQueue: 底层是链表,无界.但不是真正的无界,最大为int的最大值
  • BlockingQueue的核心方法:
    put(anObject): 将参数放入队列,如果放不进去会阻塞
    take(): 取出第一个数据,取不到会阻塞

代码示例

public class Demo02 {
    public static void main(String[] args) throws Exception {
        // 创建阻塞队列的对象,容量为 1
        ArrayBlockingQueue<String> arrayBlockingQueue = new ArrayBlockingQueue<>(1);
        // 存储元素
        arrayBlockingQueue.put("汉堡包");
        // 取元素
        System.out.println(arrayBlockingQueue.take());
        System.out.println(arrayBlockingQueue.take()); // 取不到会阻塞
        System.out.println("程序结束了");
    }
}

3.5阻塞队列实现等待唤醒机制【理解】

  • 案例需求
  • 生产者类(Cooker):实现Runnable接口,重写run()方法,设置线程任务
    1.构造方法中接收一个阻塞队列对象
    2.在run方法中循环向阻塞队列中添加包子
  • 3.打印添加结果
  • 消费者类(Foodie):实现Runnable接口,重写run()方法,设置线程任务
    1.构造方法中接收一个阻塞队列对象
    2.在run方法中循环获取阻塞队列中的包子
  • 3.打印获取结果
  • 测试类(Demo):里面有main方法,main方法中的代码步骤如下
    创建阻塞队列对象
  • 创建生产者线程和消费者线程对象,构造方法中传入阻塞队列对象
    分别开启两个线程
  • 代码实现
public class Cooker extends Thread {
    private ArrayBlockingQueue<String> bd;
    public Cooker(ArrayBlockingQueue<String> bd) {
        this.bd = bd;
    }
//    生产者步骤:
//            1,判断桌子上是否有汉堡包
//    如果有就等待,如果没有才生产。
//            2,把汉堡包放在桌子上。
//            3,叫醒等待的消费者开吃。
    @Override
    public void run() {
        while (true) {
            try {
                bd.put("汉堡包");
                System.out.println("厨师放入一个汉堡包");
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}
public class Foodie extends Thread {
    private ArrayBlockingQueue<String> bd;
    public Foodie(ArrayBlockingQueue<String> bd) {
        this.bd = bd;
    }
    @Override
    public void run() {
//        1,判断桌子上是否有汉堡包。
//        2,如果没有就等待。
//        3,如果有就开吃
//        4,吃完之后,桌子上的汉堡包就没有了
//                叫醒等待的生产者继续生产
//        汉堡包的总数量减一
        //套路:
        //1. while(true)死循环
        //2. synchronized 锁,锁对象要唯一
        //3. 判断,共享数据是否结束. 结束
        //4. 判断,共享数据是否结束. 没有结束
        while (true) {
            try {
                String take = bd.take();
                System.out.println("吃货将" + take + "拿出来吃了");
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}
public class Demo {
    public static void main(String[] args) {
        ArrayBlockingQueue<String> bd = new ArrayBlockingQueue<>(1);
        Foodie f = new Foodie(bd);
        Cooker c = new Cooker(bd);
        f.start();
        c.start();
    }
}

相关文章
|
17天前
|
XML JavaScript Java
【JAVA XML 探秘】DOM、SAX、StAX:揭秘 Java 中 XML 解析技术的终极指南!
【8月更文挑战第25天】本文详细探讨了Java中三种主流的XML解析技术:DOM、SAX与StAX。DOM将XML文档转换为树状结构,便于全方位访问和修改;SAX采取事件驱动模式,适用于大型文件的顺序处理;StAX则兼具DOM和SAX的优点,支持流式处理和随机访问。文中提供了每种技术的示例代码,帮助读者理解如何在实际项目中应用这些解析方法。
55 1
|
18天前
|
消息中间件 Kafka API
【Kafka消费新风潮】告别复杂,迎接简洁之美——深度解析Kafka新旧消费者API大比拼!
【8月更文挑战第24天】Apache Kafka作为一个领先的分布式流处理平台,广泛用于实时数据管道和流式应用的构建。随着其发展,消费者API经历了重大更新。旧消费者API(包括“低级”和“高级”API)虽提供灵活性但在消息顺序处理上存在挑战。2017年引入的新消费者API简化了接口,自动管理偏移量,支持更强大的消费组功能,显著降低了开发复杂度。通过对比新旧消费者API的代码示例可以看出,新API极大提高了开发效率和系统可维护性。
110 58
|
12天前
|
Java API
Java 8新特性:Lambda表达式与Stream API的深度解析
【7月更文挑战第61天】本文将深入探讨Java 8中的两个重要特性:Lambda表达式和Stream API。我们将首先介绍Lambda表达式的基本概念和语法,然后详细解析Stream API的使用和优势。最后,我们将通过实例代码演示如何结合使用Lambda表达式和Stream API,以提高Java编程的效率和可读性。
|
12天前
|
Java 开发者 UED
“Java开发者必看:异步编程实战解析,掌握这些技巧,让你的代码跑得更快!
【8月更文挑战第30天】随着互联网技术的发展,系统性能和用户体验成为关注焦点。异步编程作为提高应用响应速度和吞吐量的技术,在Java中广泛采用。本文详细介绍了Java异步编程的概念与优势,并通过实战示例展示了如何利用Future、Callable及CompletableFuture在实际项目中实施异步编程,帮助开发者更好地理解和应用这一技术。
27 2
|
13天前
|
存储 算法 Java
Java中的集合框架深度解析云上守护:云计算与网络安全的协同进化
【8月更文挑战第29天】在Java的世界中,集合框架是数据结构的代言人。它不仅让数据存储变得优雅而高效,还为程序员提供了一套丰富的工具箱。本文将带你深入理解集合框架的设计哲学,探索其背后的原理,并分享一些实用的使用技巧。无论你是初学者还是资深开发者,这篇文章都将为你打开一扇通往高效编程的大门。
|
15天前
|
SQL 设计模式 安全
Java编程中的单例模式深入解析
【8月更文挑战第27天】本文旨在探索Java中实现单例模式的多种方式,并分析其优缺点。我们将通过代码示例,展示如何在不同的场景下选择最合适的单例模式实现方法,以及如何避免常见的陷阱。
|
18天前
|
Java 开发者 C++
|
19天前
|
JSON Java API
在 Java 中解析 JSON ArrayList 的详细指南
【8月更文挑战第23天】
19 1
|
18天前
|
存储 网络协议 Java
【Netty 神奇之旅】Java NIO 基础全解析:从零开始玩转高效网络编程!
【8月更文挑战第24天】本文介绍了Java NIO,一种非阻塞I/O模型,极大提升了Java应用程序在网络通信中的性能。核心组件包括Buffer、Channel、Selector和SocketChannel。通过示例代码展示了如何使用Java NIO进行服务器与客户端通信。此外,还介绍了基于Java NIO的高性能网络框架Netty,以及如何用Netty构建TCP服务器和客户端。熟悉这些技术和概念对于开发高并发网络应用至关重要。
38 0
|
18天前
|
运维 监控 Java
【JVM 调优秘籍】实战指南:JVM 调优参数全解析,让 Java 应用程序性能飙升!
【8月更文挑战第24天】本文通过一个大型在线零售平台的例子,深入探讨了Java虚拟机(JVM)性能调优的关键技术。面对应用响应延迟的问题,文章详细介绍了几种常用的JVM参数调整策略,包括堆内存大小、年轻代配置、垃圾回收器的选择及日志记录等。通过具体实践(如设置`-Xms`, `-Xmx`, `-XX:NewRatio`, `-XX:+UseParallelGC`等),成功降低了高峰期的响应时间,提高了系统的整体性能与稳定性。案例展示了合理配置JVM参数的重要性及其对解决实际问题的有效性。
36 0

推荐镜像

更多
下一篇
DDNS