Java之线程的详细解析一

简介: 实现多线程简单了解多线程【理解】是指从软件或者硬件上实现多个线程并发执行的技术。 具有多线程能力的计算机因有硬件支持而能够在同一时间执行多个线程,提升性能。

实现多线程

简单了解多线程【理解】

是指从软件或者硬件上实现多个线程并发执行的技术。 具有多线程能力的计算机因有硬件支持而能够在同一时间执行多个线程,提升性能。

21735f5691da4b07b80619c70366a6e2.png


并发和并行【理解】

  • 并行:在同一时刻,有多个指令在多个CPU上同时执行。

image.png

  • 并发:在同一时刻,有多个指令在单个CPU上交替执行。

image.png

进程和线程【理解】

  • 进程:是正在运行的程序
    独立性:进程是一个能独立运行的基本单位,同时也是系统分配资源和调度的独立单位 动态性:进程的实质是程序的一次执行过程,进程是动态产生,动态消亡的 并发性:任何进程都可以同其他进程一起并发执行
  • 线程:是进程中的单个顺序控制流,是一条执行路径
    单线程:一个进程如果只有一条执行路径,则称为单线程程序
    多线程:一个进程如果有多条执行路径,则称为多线程程序

dbc13b66523e4c43879a951edc99c377.png

1.4实现多线程方式一:继承Thread类【应用】

  • 方法介绍
方法名 说明
void run() 在线程开启后,此方法将被调用执行
void start() 使此线程开始执行,Java虚拟机会调用run方法()
  • 实现步骤
  • 定义一个类MyThread继承Thread类
  • 在MyThread类中重写run()方法
  • 创建MyThread类的对象
  • 启动线程

代码演示

public class MyThread extends Thread {
    @Override
    public void run() {
        for(int i=0; i<100; i++) {
            System.out.println(i);
        }
    }
}
public class MyThreadDemo {
    public static void main(String[] args) {
        MyThread my1 = new MyThread();
        MyThread my2 = new MyThread();
//        my1.run();
//        my2.run();
        //void start() 导致此线程开始执行; Java虚拟机调用此线程的run方法
        my1.start();
        my2.start();
    }
}

两个小问题

  • 为什么要重写run()方法?
    因为run()是用来封装被线程执行的代码
  • run()方法和start()方法的区别?
  • run():封装线程执行的代码,直接调用,相当于普通方法的调用
    start():启动线程;然后由JVM调用此线程的run()方法

1.5实现多线程方式二:实现Runnable接口【应用】

  • Thread构造方法
方法名 说明
Thread(Runnable target) 分配一个新的Thread对象
Thread(Runnable target, String name) 分配一个新的Thread对象

实现步骤

  • 定义一个类MyRunnable实现Runnable接口
  • 在MyRunnable类中重写run()方法
  • 创建MyRunnable类的对象
  • 创建Thread类的对象,把MyRunnable对象作为构造方法的参数
  • 启动线程
  • 代码演示
public class MyRunnable implements Runnable {
    @Override
    public void run() {
        for(int i=0; i<100; i++) {
            System.out.println(Thread.currentThread().getName()+":"+i);
        }
    }
}
public class MyRunnableDemo {
    public static void main(String[] args) {
        //创建MyRunnable类的对象
        MyRunnable my = new MyRunnable();
        //创建Thread类的对象,把MyRunnable对象作为构造方法的参数
        //Thread(Runnable target)
//        Thread t1 = new Thread(my);
//        Thread t2 = new Thread(my);
        //Thread(Runnable target, String name)
        Thread t1 = new Thread(my,"坦克");
        Thread t2 = new Thread(my,"飞机");
        //启动线程
        t1.start();
        t2.start();
    }
}

1.6实现多线程方式三: 实现Callable接口【应用】

  • 方法介绍
方法名 说明
V call() 计算结果,如果无法计算结果,则抛出一个异常
FutureTask(Callable<V> callable) 创建一个 FutureTask,一旦运行就执行给定的 Callable
V get() 如有必要,等待计算完成,然后获取其结果

实现步骤

  • 定义一个类MyCallable实现Callable接口
  • 在MyCallable类中重写call()方法
  • 创建MyCallable类的对象
  • 创建Future的实现类FutureTask对象,把MyCallable对象作为构造方法的参数
  • 创建Thread类的对象,把FutureTask对象作为构造方法的参数
  • 启动线程
  • 再调用get方法,就可以获取线程结束之后的结果。
  • 代码演示
public class MyCallable implements Callable<String> {
    @Override
    public String call() throws Exception {
        for (int i = 0; i < 100; i++) {
            System.out.println("跟女孩表白" + i);
        }
        //返回值就表示线程运行完毕之后的结果
        return "答应";
    }
}
public class Demo {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        //线程开启之后需要执行里面的call方法
        MyCallable mc = new MyCallable();
        //Thread t1 = new Thread(mc);
        //可以获取线程执行完毕之后的结果.也可以作为参数传递给Thread对象
        FutureTask<String> ft = new FutureTask<>(mc);
        //创建线程对象
        Thread t1 = new Thread(ft);
        String s = ft.get();
        //开启线程
        t1.start();
        //String s = ft.get();
        System.out.println(s);
    }
}

三种实现方式的对比

  • 实现Runnable、Callable接口
  • 好处: 扩展性强,实现该接口的同时还可以继承其他的类
  • 缺点: 编程相对复杂,不能直接使用Thread类中的方法
  • 继承Thread类
  • 好处: 编程比较简单,可以直接使用Thread类中的方法
  • 缺点: 可以扩展性较差,不能再继承其他的类

1.7设置和获取线程名称【应用】

方法介绍

方法名 说明
void setName(String name) 将此线程的名称更改为等于参数name
String getName() 返回此线程的名称
Thread currentThread() 返回对当前正在执行的线程对象的引用

  • 代码演示
public class MyThread extends Thread {
    public MyThread() {}
    public MyThread(String name) {
        super(name);
    }
    @Override
    public void run() {
        for (int i = 0; i < 100; i++) {
            System.out.println(getName()+":"+i);
        }
    }
}
public class MyThreadDemo {
    public static void main(String[] args) {
        MyThread my1 = new MyThread();
        MyThread my2 = new MyThread();
        //void setName(String name):将此线程的名称更改为等于参数 name
        my1.setName("高铁");
        my2.setName("飞机");
        //Thread(String name)
        MyThread my1 = new MyThread("高铁");
        MyThread my2 = new MyThread("飞机");
        my1.start();
        my2.start();
        //static Thread currentThread() 返回对当前正在执行的线程对象的引用
        System.out.println(Thread.currentThread().getName());
    }
}

1.8线程休眠【应用】

  • 相关方法
方法名 说明
static void sleep(long millis) 使当前正在执行的线程停留(暂停执行)指定的毫秒数
  • 代码演示
public class MyRunnable implements Runnable {
    @Override
    public void run() {
        for (int i = 0; i < 100; i++) {
            try {
                Thread.sleep(100);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName() + "---" + i);
        }
    }
}
public class Demo {
    public static void main(String[] args) throws InterruptedException {
        /*System.out.println("睡觉前");
        Thread.sleep(3000);
        System.out.println("睡醒了");*/
        MyRunnable mr = new MyRunnable();
        Thread t1 = new Thread(mr);
        Thread t2 = new Thread(mr);
        t1.start();
        t2.start();
    }
}

1.9线程优先级【应用】

  • 线程调度
  • 两种调度方式
  • 分时调度模型:所有线程轮流使用 CPU 的使用权,平均分配每个线程占用 CPU 的时间片
  • 抢占式调度模型:优先让优先级高的线程使用 CPU,如果线程的优先级相同,那么会随机选择一个,优先级高的线程获取的 CPU 时间片相对多一些
  • Java使用的是抢占式调度模型
  • 随机性
    假如计算机只有一个 CPU,那么 CPU 在某一个时刻只能执行一条指令,线程只有得到CPU时间片,也就是使用权,才可以执行指令。所以说多线程程序的执行是有随机性,因为谁抢到CPU的使用权是不一定的

ecebf0d8306b4928bc1dd3e7f5912eb3.png

优先级相关方法

方法名 说明
final int getPriority() 返回此线程的优先级
final void setPriority(int newPriority) 更改此线程的优先级线程默认优先级是5;线程优先级的范围是:1-10

代码演示

public class MyCallable implements Callable<String> {
    @Override
    public String call() throws Exception {
        for (int i = 0; i < 100; i++) {
            System.out.println(Thread.currentThread().getName() + "---" + i);
        }
        return "线程执行完毕了";
    }
}
public class Demo {
    public static void main(String[] args) {
        //优先级: 1 - 10 默认值:5
        MyCallable mc = new MyCallable();
        FutureTask<String> ft = new FutureTask<>(mc);
        Thread t1 = new Thread(ft);
        t1.setName("飞机");
        t1.setPriority(10);
        //System.out.println(t1.getPriority());//5
        t1.start();
        MyCallable mc2 = new MyCallable();
        FutureTask<String> ft2 = new FutureTask<>(mc2);
        Thread t2 = new Thread(ft2);
        t2.setName("坦克");
        t2.setPriority(1);
        //System.out.println(t2.getPriority());//5
        t2.start();
    }
}

1.10守护线程【应用】

  • 相关方法
方法名 说明
void setDaemon(boolean on) 将此线程标记为守护线程,当运行的线程都是守护线程时,Java虚拟机将退出
  • 代码演示
public class MyThread1 extends Thread {
    @Override
    public void run() {
        for (int i = 0; i < 10; i++) {
            System.out.println(getName() + "---" + i);
        }
    }
}
public class MyThread2 extends Thread {
    @Override
    public void run() {
        for (int i = 0; i < 100; i++) {
            System.out.println(getName() + "---" + i);
        }
    }
}
public class Demo {
    public static void main(String[] args) {
        MyThread1 t1 = new MyThread1();
        MyThread2 t2 = new MyThread2();
        t1.setName("女神");
        t2.setName("备胎");
        //把第二个线程设置为守护线程
        //当普通线程执行完之后,那么守护线程也没有继续运行下去的必要了.
        t2.setDaemon(true);
        t1.start();
        t2.start();
    }
}

相关文章
|
1天前
|
Java 调度
Java一分钟之线程池:ExecutorService与Future
【5月更文挑战第12天】Java并发编程中,`ExecutorService`和`Future`是关键组件,简化多线程并提供异步执行能力。`ExecutorService`是线程池接口,用于提交任务到线程池,如`ThreadPoolExecutor`和`ScheduledThreadPoolExecutor`。通过`submit()`提交任务并返回`Future`对象,可检查任务状态、获取结果或取消任务。注意处理`ExecutionException`和避免无限等待。实战示例展示了如何异步执行任务并获取结果。理解这些概念对提升并发性能至关重要。
15 5
|
1天前
|
安全 Java 调度
深入理解Java并发编程:线程安全与性能优化
【5月更文挑战第12天】 在现代软件开发中,多线程编程是提升应用程序性能和响应能力的关键手段之一。特别是在Java语言中,由于其内置的跨平台线程支持,开发者可以轻松地创建和管理线程。然而,随之而来的并发问题也不容小觑。本文将探讨Java并发编程的核心概念,包括线程安全策略、锁机制以及性能优化技巧。通过实例分析与性能比较,我们旨在为读者提供一套既确保线程安全又兼顾性能的编程指导。
|
1天前
|
Java 程序员 API
Java 8新特性之Lambda表达式与Stream API的深度解析
【5月更文挑战第12天】本文将深入探讨Java 8中的两个重要新特性:Lambda表达式和Stream API。我们将从基本概念入手,逐步深入到实际应用场景,帮助读者更好地理解和掌握这两个新特性,提高Java编程效率。
13 2
|
2天前
|
Java
Java一分钟:线程协作:wait(), notify(), notifyAll()
【5月更文挑战第11天】本文介绍了Java多线程编程中的`wait()`, `notify()`, `notifyAll()`方法,它们用于线程间通信和同步。这些方法在`synchronized`代码块中使用,控制线程执行和资源访问。文章讨论了常见问题,如死锁、未捕获异常、同步使用错误及通知错误,并提供了生产者-消费者模型的示例代码,强调理解并正确使用这些方法对实现线程协作的重要性。
11 3
|
2天前
|
安全 算法 Java
Java一分钟:线程同步:synchronized关键字
【5月更文挑战第11天】Java中的`synchronized`关键字用于线程同步,防止竞态条件,确保数据一致性。本文介绍了其工作原理、常见问题及避免策略。同步方法和同步代码块是两种使用形式,需注意避免死锁、过度使用导致的性能影响以及理解锁的可重入性和升级降级机制。示例展示了同步方法和代码块的运用,以及如何避免死锁。正确使用`synchronized`是编写多线程安全代码的核心。
54 2
|
2天前
|
安全 Java 调度
Java一分钟:多线程编程初步:Thread类与Runnable接口
【5月更文挑战第11天】本文介绍了Java中创建线程的两种方式:继承Thread类和实现Runnable接口,并讨论了多线程编程中的常见问题,如资源浪费、线程安全、死锁和优先级问题,提出了解决策略。示例展示了线程通信的生产者-消费者模型,强调理解和掌握线程操作对编写高效并发程序的重要性。
41 3
|
2天前
|
安全 Java
深入理解Java并发编程:线程安全与性能优化
【5月更文挑战第11天】在Java并发编程中,线程安全和性能优化是两个重要的主题。本文将深入探讨这两个方面,包括线程安全的基本概念,如何实现线程安全,以及如何在保证线程安全的同时进行性能优化。我们将通过实例和代码片段来说明这些概念和技术。
3 0
|
2天前
|
Java 调度
Java并发编程:深入理解线程池
【5月更文挑战第11天】本文将深入探讨Java中的线程池,包括其基本概念、工作原理以及如何使用。我们将通过实例来解释线程池的优点,如提高性能和资源利用率,以及如何避免常见的并发问题。我们还将讨论Java中线程池的实现,包括Executor框架和ThreadPoolExecutor类,并展示如何创建和管理线程池。最后,我们将讨论线程池的一些高级特性,如任务调度、线程优先级和异常处理。
|
3天前
|
安全 Java
【JAVA进阶篇教学】第十篇:Java中线程安全、锁讲解
【JAVA进阶篇教学】第十篇:Java中线程安全、锁讲解
|
3天前
|
安全 Java
【JAVA进阶篇教学】第六篇:Java线程中状态
【JAVA进阶篇教学】第六篇:Java线程中状态

推荐镜像

更多