华为ICT——第七章:目标检测与目标分割01

简介: 华为ICT——第七章:目标检测与目标分割01

目标检测

目标检测是可以看成图像分类与定位的结合,给定一张图片,目标检测系统要能够识别出图片的目标并给出其位置。

目标检测算法(1)


目标检测算法(2)


目标检测性能度量


目标检测算法评估指标

运行速度

准确率和召回率


R-CNN


Fast-CNN


Faster R-CNN


YOLO(1)


 YOLO(2)

 YOLO v3网络结构:

图像分割:

图像识别任务对比:

图像分割的性能度量:

运动分割:

边缘分割:

连通域分割:

目标分割:

深度学习图像分割:

SegNet:


目录
相关文章
|
机器学习/深度学习 传感器 编解码
首篇!BEV-Locator:多目端到端视觉语义定位网络(清华&轻舟智航)(下)
准确的定位能力是自动驾驶的基础。传统的视觉定位框架通过几何模型来解决语义地图匹配问题,几何模型依赖于复杂的参数调整,从而阻碍了大规模部署。本文提出了BEV定位器:一种使用多目相机图像的端到端视觉语义定位神经网络。具体地,视觉BEV(鸟瞰图)编码器提取多目图像并将其展平到BEV空间中。而语义地图特征在结构上嵌入为地图查询序列。然后,cross-model transformer将BEV特征和语义图查询关联起来。通过交叉注意力模块递归地查询自车的定位信息。最后,可以通过解码transformer输出来推断自车位姿。论文在大规模nuScenes和Qcraft数据集中评估了所提出的方法。
首篇!BEV-Locator:多目端到端视觉语义定位网络(清华&轻舟智航)(下)
|
机器学习/深度学习 传感器 编解码
一文详解视觉Transformer在CV中的现状、趋势和未来方向(分类/检测/分割/多传感器融合)(中)
本综述根据三个基本的CV任务和不同的数据流类型,全面调查了100多种不同的视觉Transformer,并提出了一种分类法,根据其动机、结构和应用场景来组织代表性方法。由于它们在训练设置和专用视觉任务上的差异,论文还评估并比较了不同配置下的所有现有视觉Transformer。此外,论文还揭示了一系列重要但尚未开发的方面,这些方面可能使此类视觉Transformer能够从众多架构中脱颖而出,例如,松散的高级语义嵌入,以弥合视觉Transformer与序列式之间的差距。最后,提出了未来有前景的研究方向。
一文详解视觉Transformer在CV中的现状、趋势和未来方向(分类/检测/分割/多传感器融合)(中)
|
1月前
|
机器学习/深度学习 人工智能 安全
大模型走向物理世界,TeleAI 发布大模型驱动的具身智能综述,覆盖300篇文献
TeleAI 团队发布了一篇关于大模型驱动的具身智能综述文章,系统回顾了该领域的研究进展与挑战,涵盖了300篇相关文献。具身智能通过将智能体与现实环境结合,提升了其感知、决策及执行能力。大模型的应用不仅增强了智能体的学习与适应能力,还提高了其泛化性和鲁棒性。然而,计算复杂度、可解释性及安全性等问题仍需解决。代表性工作包括智能机器人导航和无人机自主飞行等。论文地址:https://www.sciengine.com/SSI/doi/10.1360/SSI-2024-0076
44 4
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
KDD 2024:港大黄超团队深度解析大模型在图机器学习领域的未知边界
【8月更文挑战第12天】在KDD 2024会议中,香港大学黄超团队深入探讨了大型语言模型在图机器学习的应用与前景。他们提出将LLMs与图神经网络结合可显著增强图任务性能,并归纳出四种融合模式,为领域发展提供新视角与未来路径。论文详细分析了现有方法的优势与局限,并展望了多模态数据处理等前沿课题。[论文](https://arxiv.org/abs/2405.08011)为图机器学习领域注入了新的活力。
211 61
|
4月前
|
计算机视觉
CVPR 24:ETH Zurich等团队:重新定义小样本3D分割任务,新基准开启广阔提升潜力!
【7月更文挑战第1天】ETH Zurich团队提出了重新定义小样本3D点云分割任务,聚焦于前景泄漏和稀疏点分布问题。他们提出COSeg方法,利用类特定多原型相关性(CMC)和超相关性增强(HCA),以解决现有方法的局限。此外,通过基础原型校准(BPC)改善模型对基础类的敏感性。实验显示COSeg在性能上有显著提升,但其泛化能力和计算需求仍待优化,且遮挡和噪声等挑战仍有待解决。[论文链接](https://arxiv.org/abs/2403.00592)
74 13
|
6月前
|
机器学习/深度学习 数据挖掘
西浦、利物浦大学提出:点云数据增强首个全面综述
【5月更文挑战第26天】西交利物浦大学和利物浦大学的研究团队发表了一篇关于点云数据增强的首部全面综述,分析了点云增强技术在缓解深度学习模型过拟合问题上的作用。研究将方法分为基本(如仿射变换、随机丢弃)和高级(混合、对抗性变形)两类,并探讨了各类方法的优缺点及应用场景。尽管基本方法常用,但自动优化组合和参数、多模态增强及性能评估标准仍是挑战。该综述为研究者提供了理解与应用点云增强的指导,但也指出在某些领域的深入探讨尚不足。[arXiv:2308.12113]
151 1
|
6月前
|
算法 计算机视觉 网络架构
CVPR 202:擅长处理复杂场景和语言表达,清华&博世提出全新实例分割网络架构MagNet
【5月更文挑战第10天】在CVPR 2024会议上,清华大学与博世团队推出MagNet,一种针对复杂场景和语言表达的实例分割网络。MagNet通过Mask Grounding辅助任务强化视觉-语言对应,缩小模态差距,并结合跨模态对齐损失与模块,提升RIS任务的准确性。在RefCOCO、RefCOCO+和G-Ref基准上取得显著优势,但对罕见表达和复杂场景的处理仍有待优化。[论文链接](https://arxiv.org/abs/2312.12198)
165 5
|
机器学习/深度学习 传感器 编解码
一文详解视觉Transformer在CV中的现状、趋势和未来方向(分类/检测/分割/多传感器融合)(上)
本综述根据三个基本的CV任务和不同的数据流类型,全面调查了100多种不同的视觉Transformer,并提出了一种分类法,根据其动机、结构和应用场景来组织代表性方法。由于它们在训练设置和专用视觉任务上的差异,论文还评估并比较了不同配置下的所有现有视觉Transformer。此外,论文还揭示了一系列重要但尚未开发的方面,这些方面可能使此类视觉Transformer能够从众多架构中脱颖而出,例如,松散的高级语义嵌入,以弥合视觉Transformer与序列式之间的差距。最后,提出了未来有前景的研究方向。
一文详解视觉Transformer在CV中的现状、趋势和未来方向(分类/检测/分割/多传感器融合)(上)
|
机器学习/深度学习 人工智能 算法
一文尽览!弱监督语义/实例/全景分割全面调研(2022最新综述)(上)
今天分享一篇上交投稿TPAMI的文章,论文很全面的调研了广义上的弱监督分割算法,又涵盖了语义、实例和全景三个主流的分割任务。特别是基于目标框的弱监督分割算法,未来有很大的研究价值和落地价值,相关算法如BoxInst、DiscoBox和ECCV2022的BoxLevelset已经证明了,只用目标框可以实现可靠的分割性能。论文很赞,内容很扎实,分割方向的同学一定不要错过!
一文尽览!弱监督语义/实例/全景分割全面调研(2022最新综述)(上)
|
机器学习/深度学习 人工智能 算法
一文尽览!弱监督语义/实例/全景分割全面调研(2022最新综述)(下)
今天分享一篇上交投稿TPAMI的文章,论文很全面的调研了广义上的弱监督分割算法,又涵盖了语义、实例和全景三个主流的分割任务。特别是基于目标框的弱监督分割算法,未来有很大的研究价值和落地价值,相关算法如BoxInst、DiscoBox和ECCV2022的BoxLevelset已经证明了,只用目标框可以实现可靠的分割性能。论文很赞,内容很扎实,分割方向的同学一定不要错过!
一文尽览!弱监督语义/实例/全景分割全面调研(2022最新综述)(下)