Seata之TCC模式解读

简介: Seata之TCC模式解读

基本介绍

起源

关于TCC的概念,最早是由Pat Helland于2007年发表的一篇名为《Life beyond Distributed Transactions:an Apostate’s Opinion》的论文提出。

在该论文中,TCC还是以Tentative-Confirmation-Cancellation命名。正式以Try-Confirm-Cancel作为名称的是Atomikos公司,其注册了TCC商标。

 

概述

TCC是Try-Confirm-Cancel的简称。

TCC模式与AT模式非常相似,每阶段都是独立事务,不同的是TCC通过人工编码来实现数据恢复。需要实现三个方法:

  • Try:资源的检测和预留。做业务检查(一致性)及资源预留(隔离),此阶段仅是一个初步操作,它和后续的Confirm 一起才能真正构成一个完整的业务逻辑。
  • Confirm:完成资源操作业务;要求 Try 成功 Confirm 一定要能成功。做确认提交,Try阶段所有分支事务执行成功后开始执行 Confirm。通常情况下,采用TCC则 认为 Confirm阶段是不会出错的。即:只要Try成功,Confirm一定成功。若Confirm阶段真的出错了,需引入重试机制或人工处理。
  • Cancel:预留资源释放,可以理解为try的反向操作。在业务执行错误需要回滚的状态下执行分支事务的业务取消,预留资源释放。通常情况下,采 用TCC则认为Cancel阶段也是一定成功的。若Cancel阶段真的出错了,需引入重试机制或人工处理。

TM首先发起所有的分支事务的try操作,任何一个分支事务的try操作执行失败,TM将会发起所有分支事务的Cancel操作,若try操作全部成功,TM将会发起所有分支事务的Confirm操作,其中Confirm/Cancel 操作若执行失败,TM会进行重试。

与AT模式与TCC模式的对比

                        AT模式                 TCC模式
一阶段 prepare  在本地事务中,一并提交业务数据更新和相应回滚日志记录 调用 自定义的 prepare 逻辑
二阶段 commit 马上成功结束,自动异步批量清理回滚日志 调用 自定义的commit 逻辑
二阶段 rollback 通过回滚日志,自动 生成补偿操作,完成数据回滚。 调用 自定义的rollback 逻辑
其他 支持本地 ACID 事务 的 关系型数据库 不依赖于底层数据资源的事务支持

TCC支持把自定义的分支事务纳入到全局事务的管理中

案例流程分析

假设一个扣减用户余额的业务。假设账户A原来余额是100,需要余额扣减30元。

阶段一( Try ):检查余额是否充足,如果充足则冻结金额增加30元,可用余额扣除30

总金额 = 冻结金额 + 可用金额,数量依然是100不变。事务直接提交无需等待其它事务。

阶段二(Confirm):,现在库存充足,可以提交(Confirm),则冻结金额扣减30确认可以提交,不过之前可用金额已经扣减过了,这里只要清除冻结金额就好了

阶段二(Canncel):如果库存不足,需要回滚(Cancel),则冻结金额扣减30,可用余额增加30需要回滚,那么就要释放冻结金额,恢复可用金额:

TCC注意事项

空回滚

  • 在没有调用 TCC 资源 Try 方法的情况下,调用了二阶段的 Cancel 方法,Cancel 方法需要识别出这是一个空回 滚,然后直接返回成功。
  • 出现原因是当一个分支事务所在服务宕机或网络异常,分支事务调用记录为失败,这个时候其实是没有执行Try阶 段,当故障恢复后,分布式事务进行回滚则会调用二阶段的Cancel方法,从而形成空回滚。
  • 解决思路是关键就是要识别出这个空回滚。思路很简单就是需要知道一阶段是否执行,如果执行了,那就是正常回 滚;如果没执行,那就是空回滚。前面已经说过TM在发起全局事务时生成全局事务记录,全局事务ID贯穿整个分 布式事务调用链条。再额外增加一张分支事务记录表,其中有全局事务 ID 和分支事务 ID,第一阶段 Try 方法里会 插入一条记录,表示一阶段执行了。Cancel 接口里读取该记录,如果该记录存在,则正常回滚;如果该记录不存 在,则是空回滚。

幂等

  • 为了保证TCC二阶段提交重试机制不会引发数据不一致,要求 TCC 的二阶段 Try、 Confirm 和 Cancel 接口保证幂等,这样不会重复使用或者释放资源。如果幂等控制没有做好,很有可能导致数据 不一致等严重问题。
  • 解决思路在上述“分支事务记录”中增加执行状态,每次执行前都查询该状态。

悬挂

  • 悬挂就是对于一个分布式事务,其二阶段 Cancel 接口比 Try 接口先执行。
  • 出现原因是在 RPC 调用分支事务try时,先注册分支事务,再执行RPC调用,如果此时 RPC 调用的网络发生拥堵, 通常 RPC 调用是有超时时间的,RPC 超时以后,TM就会通知RM回滚该分布式事务,可能回滚完成后,RPC 请求 才到达参与者真正执行,而一个 Try 方法预留的业务资源,只有该分布式事务才能使用,该分布式事务第一阶段预 留的业务资源就再也没有人能够处理了,对于这种情况,我们就称为悬挂,即业务资源预留后没法继续处理。
  • 解决思路是如果二阶段执行完成,那一阶段就不能再继续执行。在执行一阶段事务时判断在该全局事务下,“分支 事务记录”表中是否已经有二阶段事务记录,如果有则不执行Try。

具体使用

@LocalTCC

该注解需要添加到上面描述的接口上,表示实现该接口的类被 seata 来管理,seata 根据事务的状态,自动调用我们定义的方法,如果没问题则调用 Commit 方法,否则调用 Rollback 方法。

@LocalTCC
public interface AccountTCCService {
}

@TwoPhaseBusinessAction  

该注解用在接口的 Try 方法上,该注解的用法如下:

@LocalTCC
public interface AccountTCCService {
    @TwoPhaseBusinessAction(name = "deduct", commitMethod = "confirm", rollbackMethod = "cancel")
    void deduct(@BusinessActionContextParameter(paramName = "userId") String userId,
                @BusinessActionContextParameter(paramName = "money")int money);
    boolean confirm(BusinessActionContext ctx);
    boolean cancel(BusinessActionContext ctx);
}

该注解包含这几个属性

  • name 为 tcc 方法的 bean 名称,需要全局唯一,一般写方法名即可;
  • commitMethod 自然地写 Commit 方法的方法名;
  • rollbackMethod 写 Rollback 方法的方法名;

@BusinessActionContextParameter

该注解用来修饰 Try 方法的入参,被修饰的入参可以在 Commit 方法和 Rollback 方法中通过 BusinessActionContext 获取。

最后对接口进行实现即可:

@Service
@Slf4j
public class AccountTCCServiceImpl implements AccountTCCService {
    @Autowired
    private AccountMapper accountMapper;
    @Autowired
    private AccountFreezeMapper freezeMapper;
    @Override
    @Transactional
    public void deduct(String userId, int money) {
        // 0.获取事务id
        String xid = RootContext.getXID();
        // 1.扣减可用余额
        accountMapper.deduct(userId, money);
        // 2.记录冻结金额,事务状态
        AccountFreeze freeze = new AccountFreeze();
        freeze.setUserId(userId);
        freeze.setFreezeMoney(money);
        freeze.setState(AccountFreeze.State.TRY);
        freeze.setXid(xid);
        freezeMapper.insert(freeze);
    }
    @Override
    public boolean confirm(BusinessActionContext ctx) {
        // 1.获取事务id
        String xid = ctx.getXid();
        // 2.根据id删除冻结记录
        int count = freezeMapper.deleteById(xid);
        return count == 1;
    }
    @Override
    public boolean cancel(BusinessActionContext ctx) {
        // 0.查询冻结记录
        String xid = ctx.getXid();
        AccountFreeze freeze = freezeMapper.selectById(xid);
        // 1.恢复可用余额
        accountMapper.refund(freeze.getUserId(), freeze.getFreezeMoney());
        // 2.将冻结金额清零,状态改为CANCEL
        freeze.setFreezeMoney(0);
        freeze.setState(AccountFreeze.State.CANCEL);
        int count = freezeMapper.updateById(freeze);
        return count == 1;
    }
}

小结

性能:好

模式:AP,存在数据不一致的中间状态

难易程度:复杂,SEATA TC只负责全局事务的提交与回滚指令,具体的回滚处理全靠程序员自己实现(手动写代码)

使用要求

  • 所有服务与数据库必须要自己拥有管理权
  • 支持异构数据库,可以使用不同选型实现


相关文章
|
8月前
|
自然语言处理 监控 Dubbo
Seata常见问题之使用tcc模式配置yml如何解决
Seata 是一个开源的分布式事务解决方案,旨在提供高效且简单的事务协调机制,以解决微服务架构下跨服务调用(分布式场景)的一致性问题。以下是Seata常见问题的一个合集
226 4
|
8月前
|
数据库
|
1月前
|
数据库 微服务
SEATA模式
Seata 是一款开源的分布式事务解决方案,支持多种事务模式以适应不同的应用场景。其主要模式包括:AT(TCC)模式,事务分三阶段执行;TCC 模式,提供更灵活的事务控制;SAGA 模式,基于状态机实现跨服务的事务一致性;XA 模式,采用传统两阶段提交协议确保数据一致性。
50 5
|
2月前
Seata框架在AT模式下是如何保证数据一致性的?
通过以上这些机制的协同作用,Seata 在 AT 模式下能够有效地保证数据的一致性,确保分布式事务的可靠执行。你还可以进一步深入研究 Seata 的具体实现细节,以更好地理解其数据一致性保障的原理。
58 3
|
7月前
|
Apache 开发者
Apache Seata 如何解决 TCC 模式的幂等、悬挂和空回滚问题
【6月更文挑战第8天】Apache Seata 是一款分布式事务框架,解决TCC模式下的幂等、悬挂和空回滚问题。通过记录事务状态处理幂等,设置超时机制避免悬挂,明确标记Try操作成功来处理空回滚。Seata 提供丰富配置和管理功能,确保分布式事务的可靠性和效率,支持复杂事务处理场景,为企业业务发展提供支持。
262 7
|
8月前
|
存储 Java Nacos
Seata常见问题之xa模式出现错误xid is not valid如何解决
Seata 是一个开源的分布式事务解决方案,旨在提供高效且简单的事务协调机制,以解决微服务架构下跨服务调用(分布式场景)的一致性问题。以下是Seata常见问题的一个合集
276 4
|
8月前
|
NoSQL Java 数据库
Seata常见问题之xa模式下插入一条数据再更新这条数据会报错如何解决
Seata 是一个开源的分布式事务解决方案,旨在提供高效且简单的事务协调机制,以解决微服务架构下跨服务调用(分布式场景)的一致性问题。以下是Seata常见问题的一个合集
214 2
|
8月前
|
数据库 开发者
Seata的 TCC 模式
Seata的 TCC 模式
|
8月前
|
Java 关系型数据库 微服务
Seata常见问题之项目一直启动不成功如何解决
Seata 是一个开源的分布式事务解决方案,旨在提供高效且简单的事务协调机制,以解决微服务架构下跨服务调用(分布式场景)的一致性问题。以下是Seata常见问题的一个合集
670 0
|
2月前
|
Java 数据库
在Java中使用Seata框架实现分布式事务的详细步骤
通过以上步骤,利用 Seata 框架可以实现较为简单的分布式事务处理。在实际应用中,还需要根据具体业务需求进行更详细的配置和处理。同时,要注意处理各种异常情况,以确保分布式事务的正确执行。