『C语言进阶』数据在内存中的存储规则

简介: 『C语言进阶』数据在内存中的存储规则

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站

前言

小羊近期已经将C语言初阶学习内容与铁汁们分享完成,接下来小羊会继续追更C语言进阶相关知识,小伙伴们坐好板凳,拿起笔开始上课啦~


一、数据类型的介绍

我们目前已经学了基本的内置类型:

char       //字符数据类型
short      //短整型
int        //整形
long       //长整型
long long  //更长的整形
float      //单精度浮点数
double     //双精度浮点数

类型的基本归类

  1. 整形家族:
char:
   unsigned char
   signed char
short:
   unsigned short[int]
   signed short[int]
int:
   unsigned int
   signed int
long:
   unsigned long[int]
   signed long[int]

unsigned:无符号数类型

当一个数是无符号类型时,那么其最高位的1或0,和其它位一样,用来表示该数的大小。

signed:有符号数类型

当一个数是有符号类型时,最高数称为“符号位”。符号位为1时,表示该数为负数,为0时表示为正数。

注意:有符号类型可以表示正数,负数或0,无符号类型仅能表示大于等于0的值

  1. 浮点型家族:
float
double
  1. 构造类型:
//数组类型
struct //结构体类型
enum   //枚举类型
union //联合类型
  1. 指针类型:
int* p;
char* p;
float* p;
void* p;
  1. 空类型:
void//(空类型)

二、整型在内存中的存储

以整型int为例,我们都知道常见的编译器中int占四个字节,那么计算机中这四个字节是如何将数据存储下来的呢?

那我们先了解一下机器数和真值的概念,再去了解原码,反码,补码的概念

2.1 机器数

一个数在计算机中的二进制表示形式,叫做这个数的机器数。机器数是带符号的,在计算机中 用机器数的最高位存放符号,正数为0,负数为1。

例如:

+ 3的机器数:0000 0011
- 3的机器数:1000 0011

2.2 真值

因为第一位是符号位,所以机器数的形式值就不等于真正的数值。所以,为区别起见,将带符号位的机器数对应的真正数值称为机器数的真值。

例如:

0000 0001的真值 = +000 0001 = +1
1000 0001的真值 = -000 0001 = -1

2.3 原码、反码、补码

对于一个数,计算机要使用一定的编码方式进行存储,原码、反码、补码是机器存储一个具体数字的编码方式。

三种方式均有符号位和数值位两部分,符号位都是0表示“正数”,1表示“负数”,而数值位分正负数而定。

正数的原码、反码、补码都相同,负数的原码、反码、补码各不相同

原码:

直接将数值按照正负数的形式翻译成二进制就可以得到原码

反码:

将原码的符号位不变,其他位次按位取反

补码:

反码符号位不变,数值为+1

反码回到原码的两种方式:

1、补码-1后 取反得到原码

2、补码取反后 +1得到原码

对于整形来说:数据存放内存中其实存放的是补码,那这又是为什么呢?

在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数

值域统一处理;同时,加法和减法也可以统一处理(CPU只有加法器 )此外,补码与原码相

互转换,其运算过程是相同的,不需要额外的硬件电路。

我们看看在内存中的存储:

我们知道内存中a和b存储的是补码,但我们发现存储的顺序有点不对劲。

-10在内存中存储应该是FFFFFFF6,而我们看到的是F6FFFFFF。

这里小羊呢,就为铁汁们了解一下大小端

2.4 大小端介绍

什么是大小端:

大端存储模式:指数据的低位保存在内存的高地址中,而数据的高位保存在内存的低地址中

小端存储模式:指数据的低位保存在内存的低地址中,而数据的高位保存在内存的高地址中

例如:

数字0x12 34 56 78在内存中:

大端模式:(我们通常直观上认为的模式)

低地址 --------------------> 高地址
         0x12  |  0x34  |  0x56  |  0x78

小端模式:

低地址 --------------------> 高地址
         0x78  |  0x56  |  0x34  |  0x12

** 为什么会有大端和小端呢?**

因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit。但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。

如何判断大小端的代码:

#include<stdio.h>
int main()
{
  int i = 1;//0000 0001
  char* p = &i;
  if (*p == 1)//若第一个地址存的是1,即为小端,反则大端
    printf("小端");
  else
    printf("大端";
  return 0;
}

自定义函数测试:

#include<stdio.h>
int check_sys()
{
  int a = 1;
  char* p = (char*)&a;
  if (*p == 1)
    return 1;
  else
    return 0;
}
int main()
{
  if (check_sys() == 1)
    printf("小端");
  else
    printf("大端");
  return 0;
}

三、浮点数在内存中的存储

#include<stdio.h>
int main()
{
  int n = 9;
  float* p = (float*)&n;
  printf("n的值为:%d\n", n);
  printf("*p的值为:%f\n", *p);
  *p = 9.0;
  printf("n的值为:%d\n", n);
  printf("*p的值为:%f\n", *p);
  return 0;
}

我们先试着猜一下结果

输出显示:

怎么样,这个结果是不是有点出乎意料!那么就跟着小羊来学习浮点数的存储规则吧。

3.1浮点数存储规则

浮点数存储形式:

根据国际标准IEEE(电子和电子工程协会)754,任意一个二进制浮点数V可以表示为下面的形式:

(-1) ^ S * M * 2 ^ E


 1.  (-1) ^ S 表示符号位,当S=0时,V为正数;当S=1时,V为负数

 2.  M 表示有效数字,且1 <= M <2

 3.  2 ^ E表示指数位

例如:

  1. 十进制的5.0,写成二进制是0101 ------> 1.10x2^2
    可以得出s=0,M=1.01,E=2
  2. 十进制的-7.0,写成二进制是0111 ------->1.11x2^2
    可以得出s=-1,M=1.11,E=2

IEEE 754 规定:

对于 32 位的浮点数(单精度),最高的 1 位是符号位 s ,接着的 8 位是指数 E ,剩下的 23位为有效数字 M 。

对于 64 位的浮点数(双精度),最高的 1 位是符号位S,接着的 11 位是指数 E ,剩下的 52 位为有效数字 M 。

IEEE 754 对有效数字** M **和指数 E ,还有一些特别规定。

前面说过, 1≤M<2 ,也就是说, M 可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示小数部分。

IEEE 754 规定,在计算机内部保存 M 时,默认这个数的第一位总是 1 ,因此可以被舍去,只保存后面的xxxxxx部分。比如保存 1.01 的时候,只保存01 ,等到读取的时候,再把第一位的 1 加上去。这样做的目的,是节省 1 位有效数字。以 32 位浮点数为例,留给M 只有 23 位,将第一位的1 舍去后等于可以保存 24 位有效数字。

至于指数 E ,情况就比较复杂。首先, E 为一个无符号整数( unsigned int )

这意味着,如果 E 为 8 位,它的取值范围为 0~255 ;如果 E 为 11 位,它的取值范围为 0~2047 。但是我们知道,科学计数法中的E 是可以出现负数的,所以IEEE 754 规定,存入内存时 E 的真实值必须再加上一个中间数,对于 8 位的 E ,这个中间数是127 ;对于 11 位的 E ,这个中间数是1023 。比如 2^10的 E 是 10 ,所以保存成 32 位浮点数时,必须保存成 10+127=137 ,即10001001。

3.2 浮点型的读取

我们知道浮点型在内存中的存储后,将步骤反过来就是取出的过程。

1、有效数字M:

IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存小数部分。比如保存1.0110001101时,只保存0110001101,后面的位数补0就可以了,等到读取的时候,再把第一位的1补上去。

2、指数E

E为一个无符号整数(unsigned int)根据指数域不同取值分为一下三种情况:

1)E不全为0或不全为1(规格化值)

这是最常见情况,取出内存中的数时,指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。

2)E全为0(非规格化值)

这时,浮点数的指数E等于1-127(或1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxxx的小数。这样做是为了表示正负零,以及接近于0的很小的数字。

3)E全为1(特殊数值)

当指数域全为1时属于这种情形。此时,如果小数域全为0且符号域S=0,则表示正无穷,如果小数域全为0且符号域S=1,则表示负无穷。如果小数域不全为0时,浮点数将被解释为NaN, 即不是一个数(Not a Number)

解释前面的题目:

整形9以浮点型打印
整形存储,浮点型打印
0000  0000 0000 0000 0000 0000 0000 1001
浮点型读取:
s=0,M=000 0000 0000 0000 0000 0110,E=0000 0000(E全为0)
所以结果为:0.0000(近于0的很小的数字)
现在看例题的第二部:
浮点数9.0以整形打印
9.0 -> 1001.0 -> (-1)^0*1.001*2^3 -> s=0,M=1.001,E=,3+127=130
所以第一位的符号位s=0,有效数字M为001后面在加20个0,凑满23位,指数E为3+127=130,即10000010
所以写成S+E+M:
0 10000010 001 0000 0000 0000 0000 0000
这32位的二进制数,还原成十进制,正是1091567616

总结

希望看完这篇文章对铁汁们有所帮助,小羊后续还会持续更新C语言的学习知识,希望小伙伴们给个支持,来个一键三连~

相关文章
|
2月前
|
存储 编译器 C语言
C语言存储类详解
在 C 语言中,存储类定义了变量的生命周期、作用域和可见性。主要包括:`auto`(默认存储类,块级作用域),`register`(建议存储在寄存器中,作用域同 `auto`,不可取地址),`static`(生命周期贯穿整个程序,局部静态变量在函数间保持值,全局静态变量限于本文件),`extern`(声明变量在其他文件中定义,允许跨文件访问)。此外,`typedef` 用于定义新数据类型名称,提升代码可读性。 示例代码展示了不同存储类变量的使用方式,通过两次调用 `function()` 函数,观察静态变量 `b` 的变化。合理选择存储类可以优化程序性能和内存使用。
152 82
|
13天前
|
存储 大数据 编译器
C语言:结构体对齐规则
C语言中,结构体对齐规则是指编译器为了提高数据访问效率,会根据成员变量的类型对结构体中的成员进行内存对齐。通常遵循编译器默认的对齐方式或使用特定的对齐指令来优化结构体布局,以减少内存浪费并提升性能。
|
27天前
|
存储 C语言 C++
深入C语言,发现多样的数据之枚举和联合体
深入C语言,发现多样的数据之枚举和联合体
深入C语言,发现多样的数据之枚举和联合体
|
27天前
|
存储 C语言
深入C语言内存:数据在内存中的存储
深入C语言内存:数据在内存中的存储
|
28天前
|
C语言
回溯入门题,数据所有排列方式(c语言)
回溯入门题,数据所有排列方式(c语言)
|
1月前
|
存储 C语言
C语言中的浮点数存储:深入探讨
C语言中的浮点数存储:深入探讨
|
27天前
|
C语言 C++
C语言 之 内存函数
C语言 之 内存函数
31 3
|
17天前
|
存储 缓存 C语言
【c语言】简单的算术操作符、输入输出函数
本文介绍了C语言中的算术操作符、赋值操作符、单目操作符以及输入输出函数 `printf` 和 `scanf` 的基本用法。算术操作符包括加、减、乘、除和求余,其中除法和求余运算有特殊规则。赋值操作符用于给变量赋值,并支持复合赋值。单目操作符包括自增自减、正负号和强制类型转换。输入输出函数 `printf` 和 `scanf` 用于格式化输入和输出,支持多种占位符和格式控制。通过示例代码详细解释了这些操作符和函数的使用方法。
31 10
|
11天前
|
存储 算法 程序员
C语言:库函数
C语言的库函数是预定义的函数,用于执行常见的编程任务,如输入输出、字符串处理、数学运算等。使用库函数可以简化编程工作,提高开发效率。C标准库提供了丰富的函数,满足各种需求。
|
16天前
|
机器学习/深度学习 C语言
【c语言】一篇文章搞懂函数递归
本文详细介绍了函数递归的概念、思想及其限制条件,并通过求阶乘、打印整数每一位和求斐波那契数等实例,展示了递归的应用。递归的核心在于将大问题分解为小问题,但需注意递归可能导致效率低下和栈溢出的问题。文章最后总结了递归的优缺点,提醒读者在实际编程中合理使用递归。
41 7