System 2 Attention:可以提高不同LLM问题的推理能力

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,1000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 推理正在成为大型语言模型(llm)关注的下一个主要领域。尽管llm拥有先进的能力,但大多数llm经常被简单的错误绊倒,显示出他们在推理方面的局限性。这些模型可能会被上下文中的不相关细节所误导,或者受到输入提示中的偏差的影响。而后一种倾向被称为谄媚,也就是说模型会更偏向与输入一致,而不管准确性如何。人们已经做出了各种努力来解决这些缺点,包括增加监督训练数据或应用强化学习方法。

在最近的一项研究中,Meta AI认为问题的根源在于这些模型中使用的transformer 架构的基本设计,特别是注意力机制。这项研究的灵感来自丹尼尔·卡尼曼和阿莫斯·特沃斯基对行为心理学的研究,这些研究在《Thinking Fast and Slow》一书中得到了精彩的阐述。

  1. 系统1(System 1): 这是一种快速、直觉性、自动的思考方式。它是我们在处理日常事务时采用的那种直觉反应,几乎是无意识的。系统1负责快速做出决策,识别模式,感知情绪等。然而,它有时候可能会导致错误,因为它更容易受到情感和直觉的影响。
  2. 系统2(System 2): 这是一种更为缓慢、深思熟虑、理性的思考方式。当我们面临更复杂、挑战性的问题时,系统2被激活。这种思考方式需要更多的认知努力,包括逻辑分析、推理和意识层面的思考。系统2更能够进行深度思考,但也更耗费时间和精力。

问题

LLM通过广泛的前期训练,在推理和知识积累方面表现出色。它们被设计成高度关注当前语境来预测下一个单词。例如,如果一个特定的实体出现在文本中,模型会预测它的重复出现。基于“transformer”的模型,擅长在语境中识别相似的单词和概念。虽然这提高了他们预测的准确性,但也使他们容易受到分析环境中误导性相关性的影响。

S2A

Meta AI 的这种方法被称为系统2注意力(S2A),包括提示LLM创建一个上下文,剥离掉可能扭曲推理的不相关信息。这个概念的灵感来自人类的认知过程,其中“System 2”代表有意识的、努力的心理活动,特别是在容易出错的“System 1”推理不够充分的情况下。S2A旨在通过指导LLM的推理能力来克服transformer 注意力机制固有的缺陷来复制这一点。

在一个典型的场景中,LLM提供了一个上下文(x),并负责生成高质量的输出(y)。S2A通过两步法修改了这个过程。首先,S2A通过删除可能对输出产生负面影响的元素,将给定的上下文(x)重新表述为精炼的版本(x’)。用x ' ~ S2A(x)表示。然后,LLM使用修改后的上下文(x ')生成最终响应(y),而不是用y ~ LLM(x ')表示的原始上下文。

S2A包含了一系列实现这第一步的技术。Meta AI的具体方法利用了已经熟练掌握推理和生成任务的指令调整LLM。他们使用这些功能通过提示来指示LLM执行S2A任务。在实践中,这涉及到创建一个零样本提示,引导LLM将System 2 Attention应用于给定的上下文,表示为S2A(x) = LLM(PS2A(x)),其中PS2A是生成提示的函数。

Meta AI选择LLaMA-2-70B-chat作为他们的主要评估模型。他们在两种不同的情况下评估其性能:

基线设置:在这种方法中,数据集的输入提示直接提供给模型,然后模型以零样本的方式生成响应。这种方法很简单,但有一个缺点。模型的输出容易受到输入提示中出现的任何偏见、意见或无关细节的影响。

默示(Oracle)提示:给模型一个清理过的提示,去掉任何多余的观点或不相关的句子。然后,模型以零样本的方式响应这个改进的提示。如果它能够从输入中完美地过滤掉无关信息,那么则可以衡量模型的理想性能水平。

结果

评估S2A在三种不同场景下的有效性,这些场景突出了LLM的推理能力。

事实问题回答:用了来自SycophancyEval1的TriviaQA版本,专为直接基于事实的查询而设计,但在提示中包含了额外的意见。他们用提示进行实验,提示或建议正确答案或错误答案,或反驳正确答案。众所周知,这些附加因素会影响标准模型的响应。研究结果表明,在这种受意见影响的场景中,S2A显著提高了准确性,与无偏见或“oracle”提示的性能密切匹配。

长篇论点生成:使用了SycophancyEval的论点提示,其中包括所提供论点上下文中的观点。这些提示带有评论,表达了对论点的喜欢、不喜欢、作者身份或非作者身份。标准模型往往会根据这些情绪来歪曲他们的反应。但是S2A在保持生成的参数的客观性方面有了显著的改进,甚至超过了oracle提示符的客观性水平。

数学单词问题解决:在GSM-IC任务上测试S2A,该任务涉及来自GSM8K的数学单词问题,但添加了不相关的句子。这些分散注意力的句子会显著降低llm的准确性。Meta AI使用两种类型的干扰进行实验:随机的和主题相关的。该设置旨在评估S2A如何有效地过滤掉无关信息,并专注于问题的基本方面,以提供准确的解决方案。

总结

S2A是LLM推理方法发展的一个重要里程碑。该方法与人类推理非常相似,避免了干扰。我们应该期待S2A在最近几个月成为推理研究的重要基线。

论文地址:System 2 Attention (is something you might need too)

https://avoid.overfit.cn/post/4d6dae0510b44b779668dc4ab51108e9

作者:Jesus Rodriguez

目录
相关文章
|
29天前
|
存储 机器学习/深度学习 算法
​​LLM推理效率的范式转移:FlashAttention与PagedAttention正在重塑AI部署的未来​
本文深度解析FlashAttention与PagedAttention两大LLM推理优化技术:前者通过分块计算提升注意力效率,后者借助分页管理降低KV Cache内存开销。二者分别从计算与内存维度突破性能瓶颈,显著提升大模型推理速度与吞吐量,是当前高效LLM系统的核心基石。建议收藏细读。
415 125
|
14天前
|
人工智能 自然语言处理 TensorFlow
134_边缘推理:TensorFlow Lite - 优化移动端LLM部署技术详解与实战指南
在人工智能与移动计算深度融合的今天,将大语言模型(LLM)部署到移动端和边缘设备已成为行业发展的重要趋势。TensorFlow Lite作为专为移动和嵌入式设备优化的轻量级推理框架,为开发者提供了将复杂AI模型转换为高效、低功耗边缘计算解决方案的强大工具。随着移动设备硬件性能的不断提升和模型压缩技术的快速发展,2025年的移动端LLM部署已不再是遥远的愿景,而是正在成为现实的技术实践。
|
1月前
|
机器学习/深度学习 人工智能 前端开发
解决推理能力瓶颈,用因果推理提升LLM智能决策
从ChatGPT到AI智能体,标志着AI从对话走向自主执行复杂任务的能力跃迁。AI智能体可完成销售、旅行规划、外卖点餐等多场景任务,但其发展受限于大语言模型(LLM)的推理能力。LLM依赖统计相关性,缺乏对因果关系的理解,导致在非确定性任务中表现不佳。结合因果推理与内省机制,有望突破当前AI智能体的推理瓶颈,提升其决策准确性与自主性。
142 6
解决推理能力瓶颈,用因果推理提升LLM智能决策
|
14天前
|
机器学习/深度学习 缓存 PyTorch
131_推理加速:ONNX与TensorRT深度技术解析与LLM模型转换优化实践
在大语言模型(LLM)时代,高效的推理加速已成为部署高性能AI应用的关键挑战。随着模型规模的不断扩大(从BERT的数亿参数到GPT-4的数千亿参数),推理过程的计算成本和延迟问题日益突出。ONNX(开放神经网络交换格式)和TensorRT作为业界领先的推理优化框架,为LLM的高效部署提供了强大的技术支持。本文将深入探讨LLM推理加速的核心原理,详细讲解PyTorch模型转换为ONNX和TensorRT的完整流程,并结合2025年最新优化技术,提供可落地的代码实现与性能调优方案。
|
14天前
|
缓存 监控 安全
80_离线环境搭建:无互联网LLM推理
在当今大语言模型(LLM)蓬勃发展的时代,许多组织和个人面临着一个共同的挑战:如何在无互联网连接的环境中高效部署和使用LLM?这一需求源于多方面的考量,包括数据安全、隐私保护、网络限制、极端环境作业等。2025年,随着企业对数据主权意识的增强和边缘计算的普及,离线LLM部署已成为AI应用落地的关键场景之一。
|
1月前
|
存储 缓存 负载均衡
LLM推理成本直降60%:PD分离在大模型商业化中的关键价值
在LLM推理中,Prefill(计算密集)与Decode(访存密集)阶段特性不同,分离计算可提升资源利用率。本文详解vLLM框架中的PD分离实现及局限,并分析Dynamo、Mooncake、SGLang等主流方案,探讨KV缓存、传输机制与调度策略,助力LLM推理优化。建议点赞收藏,便于后续查阅。
614 1
|
6月前
|
机器学习/深度学习 存储 缓存
加速LLM大模型推理,KV缓存技术详解与PyTorch实现
大型语言模型(LLM)的推理效率是AI领域的重要挑战。本文聚焦KV缓存技术,通过存储复用注意力机制中的Key和Value张量,减少冗余计算,显著提升推理效率。文章从理论到实践,详细解析KV缓存原理、实现与性能优势,并提供PyTorch代码示例。实验表明,该技术在长序列生成中可将推理时间降低近60%,为大模型优化提供了有效方案。
1044 15
加速LLM大模型推理,KV缓存技术详解与PyTorch实现
|
3月前
|
弹性计算 关系型数据库 API
自建Dify平台与PAI EAS LLM大模型
本文介绍了如何使用阿里云计算巢(ECS)一键部署Dify,并在PAI EAS上搭建LLM、Embedding及重排序模型,实现知识库支持的RAG应用。内容涵盖Dify初始化、PAI模型部署、API配置及RAG知识检索设置。
自建Dify平台与PAI EAS LLM大模型
|
14天前
|
监控 安全 Docker
10_大模型开发环境:从零搭建你的LLM应用平台
在2025年,大语言模型(LLM)已经成为AI应用开发的核心基础设施。无论是企业级应用、科研项目还是个人创新,拥有一个高效、稳定、可扩展的LLM开发环境都至关重要。