go语言中的接口(二)

简介: go语言中的接口

go语言中的接口(一)https://developer.aliyun.com/article/1391460


因为(&a).Add()改变的只是函数参数a,对外部实际要操作的对象并无影响,这不符合用户的预期。所以,Go语言不会自动为其生成该函数。因此,类型Integer只存在Less()方法,缺少Add()方法,不满足LessAdder接口,故此上面的语句(2)不能赋值。

为了进一步证明以上的推理,我们不妨再定义一个Lesser接口,如下:

type Lesser interface { 
 Less(b Integer) bool
} 

然后定义一个Integer类型的对象实例,将其赋值给Lesser接口:

var a Integer = 1 
var b1 Lesser = &a ... (1) 
var b2 Lesser = a ... (2) 

正如我们所料的那样,语句(1)和语句(2)均可以编译通过。

我们再来讨论另一种情形:将一个接口赋值给另一个接口。在Go语言中,只要两个接口拥有相同的方法列表(次序不同不要紧),那么它们就是等同的,可以相互赋值。

下面我们来看一个示例,这是第一个接口:

package one 
type ReadWriter interface { 
 Read(buf []byte) (n int, err error) 
 Write(buf []byte) (n int, err error) 
} 

第二个接口位于另一个包中:

package two 
type IStream interface { 
 Write(buf []byte) (n int, err error) 
 Read(buf []byte) (n int, err error) 
} 

这里我们定义了两个接口,一个叫one.ReadWriter,一个叫two.Istream,两者都定义了Read()、Write()方法,只是定义次序相反。one.ReadWriter先定义了Read()再定义了Write(),而two.IStream反之。

在Go语言中,这两个接口实际上并无区别,因为:

 任何实现了one.ReadWriter接口的类,均实现了two.IStream;

 任何one.ReadWriter接口对象可赋值给two.IStream,反之亦然;

 在任何地方使用one.ReadWriter接口与使用two.IStream并无差异。

以下这些代码可编译通过:

var file1 two.IStream = new(File) 
var file2 one.ReadWriter = file1 
var file3 two.IStream = file2 

接口赋值并不要求两个接口必须等价。如果接口A的方法列表是接口B的方法列表的子集,那么接口B可以赋值给接口A。例如,假设我们有Writer接口:

type Writer interface { 
 Write(buf []byte) (n int, err error) 
} 

就可以将上面的one.ReadWriter和two.IStream接口的实例赋值给Writer接口:

var file1 two.IStream = new(File) 
var file4 Writer = file1 

但是反过来并不成立:

var file1 Writer = new(File) 
var file5 two.IStream = file1 // 编译不能通过

这段代码无法编译通过,原因是显然的:file1并没有Read()方法。

接口查询

查询语法,代码如下:

var file1 Writer = ... 
if file5, ok := file1.(two.IStream); ok { 
 ... 
} 

这个if语句检查file1接口指向的对象实例是否实现了two.IStream接口,如果实现了,则执行特定的代码。

接口查询是否成功,要在运行期才能够确定。

类型查询

在Go语言中,还可以更加直截了当地询问接口指向的对象实例的类型,例如:

var v1 interface{} = ... 
switch v := v1.(type) { 
 case int: // 现在v的类型是int 
 case string: // 现在v的类型是string 
 ... 
} 

就像现实生活中物种多得数不清一样,语言中的类型也多得数不清,所以类型查询并不经常使用。它更多是个补充,需要配合接口查询使用,例如:

type Stringer interface { 
 String() string
} 
func Println(args ...interface{}) { 
 for _, arg := range args { 
 switch v := v1.(type) { 
 case int: // 现在v的类型是int 
 case string: // 现在v的类型是string 
 default: 
 if v, ok := arg.(Stringer); ok { // 现在v的类型是Stringer 
 val := v.String() 
 // ... 
 } else { 
 // ... 
 } 
 } 
 } 
} 

当然,Go语言标准库的Println()比这个例子要复杂很多,我们这里只摘取其中的关键部

分进行分析。对于内置类型,Println()采用穷举法,将每个类型转换为字符串进行打印。对于更一般的情况,首先确定该类型是否实现了String()方法,如果实现了,则用String()方法将其转换为字符串进行打印。否则,Println()利用反射功能来遍历对象的所有成员变量进行打印。

接口组合

像之前介绍的类型组合一样,Go语言同样支持接口组合。我们已经介绍过Go语言包中io.Reader接口和io.Writer接口,接下来我们再介绍同样来自于io包的另一个接口io.ReadWriter:

// ReadWriter接口将基本的Read和Write方法组合起来
type ReadWriter interface { 
 Reader 
 Writer 
} 
这个接口组合了Reader和Writer两个接口,它完全等同于如下写法:
type ReadWriter interface { 
 Read(p []byte) (n int, err error) 
 Write(p []byte) (n int, err error) 
} 

因为这两种写法的表意完全相同:ReadWriter接口既能做Reader接口的所有事情,又能做Writer接口的所有事情。在Go语言包中,还有众多类似的组合接口,比如ReadWriteCloser、ReadWriteSeeker、ReadSeeker和WriteCloser等。

可以认为接口组合是类型匿名组合的一个特定场景,只不过接口只包含方法,而不包含任何成员变量。

Any类型

由于Go语言中任何对象实例都满足空接口interface{},所以interface{}看起来像是可

以指向任何对象的Any类型,如下:

var v1 interface{} = 1 // 将int类型赋值给interface{} 
var v2 interface{} = "abc" // 将string类型赋值给interface{} 
var v3 interface{} = &v2 // 将*interface{}类型赋值给interface{} 
var v4 interface{} = struct{ X int }{1} 
var v5 interface{} = &struct{ X int }{1} 

当函数可以接受任意的对象实例时,我们会将其声明为interface{},最典型的例子是标

准库fmt中PrintXXX系列的函数,例如:

func Printf(fmt string, args …interface{})
func Println(args …interface{})
相关文章
|
24天前
|
运维 监控 算法
监控局域网其他电脑:Go 语言迪杰斯特拉算法的高效应用
在信息化时代,监控局域网成为网络管理与安全防护的关键需求。本文探讨了迪杰斯特拉(Dijkstra)算法在监控局域网中的应用,通过计算最短路径优化数据传输和故障检测。文中提供了使用Go语言实现的代码例程,展示了如何高效地进行网络监控,确保局域网的稳定运行和数据安全。迪杰斯特拉算法能减少传输延迟和带宽消耗,及时发现并处理网络故障,适用于复杂网络环境下的管理和维护。
|
25天前
|
编译器 Go
揭秘 Go 语言中空结构体的强大用法
Go 语言中的空结构体 `struct{}` 不包含任何字段,不占用内存空间。它在实际编程中有多种典型用法:1) 结合 map 实现集合(set)类型;2) 与 channel 搭配用于信号通知;3) 申请超大容量的 Slice 和 Array 以节省内存;4) 作为接口实现时明确表示不关注值。此外,需要注意的是,空结构体作为字段时可能会因内存对齐原因占用额外空间。建议将空结构体放在外层结构体的第一个字段以优化内存使用。
|
1月前
|
存储 Go
Go 语言入门指南:切片
Golang中的切片(Slice)是基于数组的动态序列,支持变长操作。它由指针、长度和容量三部分组成,底层引用一个连续的数组片段。切片提供灵活的增减元素功能,语法形式为`[]T`,其中T为元素类型。相比固定长度的数组,切片更常用,允许动态调整大小,并且多个切片可以共享同一底层数组。通过内置的`make`函数可创建指定长度和容量的切片。需要注意的是,切片不能直接比较,只能与`nil`比较,且空切片的长度为0。
Go 语言入门指南:切片
|
1月前
|
算法 安全 Go
公司局域网管理系统里的 Go 语言 Bloom Filter 算法,太值得深挖了
本文探讨了如何利用 Go 语言中的 Bloom Filter 算法提升公司局域网管理系统的性能。Bloom Filter 是一种高效的空间节省型数据结构,适用于快速判断元素是否存在于集合中。文中通过具体代码示例展示了如何在 Go 中实现 Bloom Filter,并应用于局域网的 IP 访问控制,显著提高系统响应速度和安全性。随着网络规模扩大和技术进步,持续优化算法和结合其他安全技术将是企业维持网络竞争力的关键。
50 2
公司局域网管理系统里的 Go 语言 Bloom Filter 算法,太值得深挖了
|
1月前
|
开发框架 前端开发 Go
eino — 基于go语言的大模型应用开发框架(二)
本文介绍了如何使用Eino框架实现一个基本的LLM(大语言模型)应用。Eino中的`ChatModel`接口提供了与不同大模型服务(如OpenAI、Ollama等)交互的统一方式,支持生成完整响应、流式响应和绑定工具等功能。`Generate`方法用于生成完整的模型响应,`Stream`方法以流式方式返回结果,`BindTools`方法为模型绑定工具。此外,还介绍了通过`Option`模式配置模型参数及模板功能,支持基于前端和用户自定义的角色及Prompt。目前主要聚焦于`ChatModel`的`Generate`方法,后续将继续深入学习。
277 7
|
25天前
|
存储 缓存 监控
企业监控软件中 Go 语言哈希表算法的应用研究与分析
在数字化时代,企业监控软件对企业的稳定运营至关重要。哈希表(散列表)作为高效的数据结构,广泛应用于企业监控中,如设备状态管理、数据分类和缓存机制。Go 语言中的 map 实现了哈希表,能快速处理海量监控数据,确保实时准确反映设备状态,提升系统性能,助力企业实现智能化管理。
33 3
|
1月前
|
监控 Linux PHP
【02】客户端服务端C语言-go语言-web端PHP语言整合内容发布-优雅草网络设备监控系统-2月12日优雅草简化Centos stream8安装zabbix7教程-本搭建教程非docker搭建教程-优雅草solution
【02】客户端服务端C语言-go语言-web端PHP语言整合内容发布-优雅草网络设备监控系统-2月12日优雅草简化Centos stream8安装zabbix7教程-本搭建教程非docker搭建教程-优雅草solution
88 20
|
1月前
|
存储 开发框架 Devops
eino — 基于go语言的大模型应用开发框架(一)
Eino 是一个受开源社区优秀LLM应用开发框架(如LangChain和LlamaIndex)启发的Go语言框架,强调简洁性、可扩展性和可靠性。它提供了易于复用的组件、强大的编排框架、简洁明了的API、最佳实践集合及实用的DevOps工具,支持快速构建和部署LLM应用。Eino不仅兼容多种模型库(如OpenAI、Ollama、Ark),还提供详细的官方文档和活跃的社区支持,便于开发者上手使用。
203 8
|
25天前
|
存储 缓存 安全
Go 语言中的 Sync.Map 详解:并发安全的 Map 实现
`sync.Map` 是 Go 语言中用于并发安全操作的 Map 实现,适用于读多写少的场景。它通过两个底层 Map(`read` 和 `dirty`)实现读写分离,提供高效的读性能。主要方法包括 `Store`、`Load`、`Delete` 等。在大量写入时性能可能下降,需谨慎选择使用场景。
|
1月前
|
存储 算法 Go
Go语言实战:错误处理和panic_recover之自定义错误类型
本文深入探讨了Go语言中的错误处理和panic/recover机制,涵盖错误处理的基本概念、自定义错误类型的定义、panic和recover的工作原理及应用场景。通过具体代码示例介绍了如何定义自定义错误类型、检查和处理错误值,并使用panic和recover处理运行时错误。文章还讨论了错误处理在实际开发中的应用,如网络编程、文件操作和并发编程,并推荐了一些学习资源。最后展望了未来Go语言在错误处理方面的优化方向。