Python高级数据结构——B树和B+树

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: Python高级数据结构——B树和B+树

Python中的B树和B+树:高级数据结构解析

B树和B+树是一种多叉树,常用于处理大量数据的存储和检索操作。它们广泛应用于文件系统、数据库索引等领域,具有高效的插入、删除和搜索性能。在本文中,我们将深入讲解Python中的B树和B+树,包括它们的基本概念、插入、删除和搜索操作,并使用代码示例演示它们的使用。

基本概念

1. B树和B+树的定义

B树和B+树是一种自平衡的搜索树,其每个节点可以包含多个键值对。B树和B+树的主要区别在于节点的定义和遍历方式。

B树: 每个节点包含键值对,并具有子节点。B树的节点包含的键值对数量介于t-1和2t-1之间,其中t是树的最小度数。
B+树: 内部节点只包含键值,不存储数据。所有的数据都存储在叶子节点上,形成有序链表。B+树的节点包含的键值对数量介于t和2t-1之间。

class BNode:
    def __init__(self, is_leaf=True):
        self.keys = []
        self.children = []
        self.is_leaf = is_leaf

class BTree:
    def __init__(self, t):
        self.root = BNode()
        self.t = t  # 最小度数

插入操作

2. B树和B+树的插入

B树和B+树的插入操作包括两个步骤:首先找到要插入的位置,然后将键值对插入到节点中。插入后,可能需要进行节点分裂操作,以保持树的平衡性。

class BTree:
    # ... (前面的定义)

    def insert(self, key):
        root = self.root

        if len(root.keys) == 2 * self.t - 1:
            new_root = BNode(is_leaf=False)
            new_root.children.append(root)
            self._split_child(new_root, 0)
            self.root = new_root
            self._insert_non_full(new_root, key)
        else:
            self._insert_non_full(root, key)

    def _insert_non_full(self, x, key):
        i = len(x.keys) - 1

        if x.is_leaf:
            x.keys.append(None)
            while i >= 0 and key < x.keys[i]:
                x.keys[i + 1] = x.keys[i]
                i -= 1
            x.keys[i + 1] = key
        else:
            while i >= 0 and key < x.keys[i]:
                i -= 1
            i += 1
            if len(x.children[i].keys) == 2 * self.t - 1:
                self._split_child(x, i)
                if key > x.keys[i]:
                    i += 1
            self._insert_non_full(x.children[i], key)

    def _split_child(self, x, i):
        t = self.t
        y = x.children[i]
        z = BNode(is_leaf=y.is_leaf)

        x.children.insert(i + 1, z)
        x.keys.insert(i, y.keys[t - 1])

        z.keys = y.keys[t:2 * t - 1]
        y.keys = y.keys[0:t - 1]

        if not y.is_leaf:
            z.children = y.children[t:2 * t]
            y.children = y.children[0:t]

删除操作

3. B树和B+树的删除

B树和B+树的删除操作同样包括两个步骤:首先找到要删除的位置,然后从节点中删除键值对。删除后,可能需要进行节点合并操作,以保持树的平衡性。

class BTree:
    # ... (前面的定义)

    def delete(self, key):
        root = self.root

        if len(root.keys) == 0:
            return

        self._delete(root, key)

        if len(root.keys) == 0 and not root.is_leaf:
            self.root = root.children[0]

    def _delete(self, x, key):
        t = self.t
        i = 0

        while i < len(x.keys) and key > x.keys[i]:
            i += 1

        if i < len(x.keys) and key == x.keys[i]:
            if x.is_leaf:
                del x.keys[i]
            else:
                self._delete_internal(x, i)
        elif not x.is_leaf:
            self._delete_recursive(x, i, key)

    def _delete_recursive(self, x, i, key):
        t = self.t
        child = x.children[i]
        if len(child.keys) == t - 1:
            self._fix_child(x, i)
            i -= 1

        self._delete(child, key)

    def _delete_internal(self, x, i):
        t = self.t
        key = x.keys[i]

        if x.children[i].is_leaf:
            predecessor = self._get_predecessor(x.children[i])
            x.keys[i] = predecessor
            self._delete(x.children[i], predecessor)
        else:
            successor = self._get_successor(x.children[i])
            x.keys[i] = successor
            self._delete(x.children[i], successor)

    def _get_predecessor(self, x):
        while not x.is_leaf:
            x = x.children[-1]
        return x.keys[-1]

    def _get_successor(self, x):
        while not x.is_leaf:
            x = x.children[0]
        return x.keys[0]

    def _fix_child(self, x, i):
        t = self.t
        if i > 0 and len(x.children[i - 1].keys) >= t:
            self._borrow_from_prev(x, i)
        elif i < len(x.children) - 1 and len(x.children[i + 1].keys) >= t:
            self._borrow_from_next(x, i)
        elif i > 0:
            self._merge(x, i - 1)
        else:
            self._merge(x, i)

    def _borrow_from_prev(self, x, i):
        child = x.children[i]
        sibling = x.children[i - 1]

        child.keys.insert(0, x.keys[i - 1])
        x.keys[i - 1] = sibling.keys.pop()

        if not child.is_leaf:
            child.children.insert(0, sibling.children.pop())

    def _borrow_from_next(self, x, i):
        child = x.children[i]
        sibling = x.children[i + 1]

        child.keys.append(x.keys[i])
        x.keys[i] = sibling.keys.pop(0)

        if not child.is_leaf:
            child.children.append(sibling.children.pop(0))

    def _merge(self, x, i):
        t = self.t
        child = x.children[i]
        sibling = x.children[i + 1]

        child.keys.append(x.keys.pop(i))
        child.keys += sibling.keys
        if not child.is_leaf:
            child.children += sibling.children

        del x.children[i + 1]

搜索操作

4. B树和B+树的搜索

B树和B+树的搜索操作与普通的二叉搜索树类似,通过递归实现。

class BTree:
    # ... (前面的定义)

    def search(self, key):
        return self._search(self.root, key)

    def _search(self, x, key):
        i = 0
        while i < len(x.keys) and key > x.keys[i]:
            i += 1
        if i < len(x.keys) and key == x.keys[i]:
            return True
        elif x.is_leaf:
            return False
        else:
            return self._search(x.children[i], key)

应用场景

B树和B+树广泛应用于文件系统、数据库索引等需要大量数据存储和检索的场景。它们的平衡性和高效性能使得它们成为处理大规模数据的理想选择。

总结

B树和B+树是一种多叉搜索树,具有高效的插入、删除和搜索性能。它们通过节点的合并和分裂操作来保持平衡,适用于大规模数据的存储和检索。在Python中,我们可以使用类似上述示例的代码实现B树和B+树,并根据实际问题定制插入、删除和搜索的操作。理解B树和B+树的基本概念和操作,将有助于更好地应用它们解决实际问题,提高数据存储和检索的效率。

目录
相关文章
|
1月前
|
算法
数据结构之博弈树搜索(深度优先搜索)
本文介绍了使用深度优先搜索(DFS)算法在二叉树中执行遍历及构建链表的过程。首先定义了二叉树节点`TreeNode`和链表节点`ListNode`的结构体。通过递归函数`dfs`实现了二叉树的深度优先遍历,按预序(根、左、右)输出节点值。接着,通过`buildLinkedList`函数根据DFS遍历的顺序构建了一个单链表,展示了如何将树结构转换为线性结构。最后,讨论了此算法的优点,如实现简单和内存效率高,同时也指出了潜在的内存管理问题,并分析了算法的时间复杂度。
54 0
|
1天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
86 66
|
29天前
|
存储 索引 Python
Python编程数据结构的深入理解
深入理解 Python 中的数据结构是提高编程能力的重要途径。通过合理选择和使用数据结构,可以提高程序的效率和质量
138 59
|
29天前
|
存储 开发者 Python
Python 中的数据结构与其他编程语言数据结构的区别
不同编程语言都有其设计理念和应用场景,开发者需要根据具体需求和语言特点来选择合适的数据结构
|
5天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
44 20
|
29天前
|
存储 开发者 索引
Python 中常见的数据结构
这些数据结构各有特点和适用场景,在不同的编程任务中发挥着重要作用。开发者需要根据具体需求选择合适的数据结构,以提高程序的效率和性能
|
29天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
28天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
29天前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
55 5
|
1月前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
94 16