spring data elasticsearch 打印sql(DSL)语句

本文涉及的产品
Elasticsearch Serverless通用抵扣包,测试体验金 200元
简介: spring data elasticsearch 打印sql(DSL)语句

刚开始使用spring data elasticsearch 会有有一个疑问就是:能不能像操作mysql那样打印sql日志,也便于分析啊,其实特别简单,具体如下的代码所示:


    /**
     * 高亮显示
     * @param keyword
     * @param pageNum
     * @param pageSize
     * @return
     */
    @GetMapping("/getUserList2")
    public Page<User> query3( String keyword, Integer pageNum, Integer pageSize) {
        if(pageNum == null || pageNum <= 0){
            pageNum = 1;
        }
        if(pageSize == null || pageSize <= 0){
            pageSize = 5;
        }
        //获取QueryBuilder
        BoolQueryBuilder querryBuilder = this.getQuerryBuilder(keyword,"三1006");
        NativeSearchQueryBuilder nativeSearchQueryBuilder = this.getWildcardQuery(keyword, "myes", "myuser");
        //关联分页、过滤器
        nativeSearchQueryBuilder
                .withIndices("myes")
                .withTypes("myuser")
                //添加bool过滤器
                .withFilter(querryBuilder)
                .withSort(SortBuilders.fieldSort("age").order(SortOrder.DESC))
                //添加分页条件
                .withPageable(PageRequest.of(pageNum - 1, pageSize));
        //查询结果
        NativeSearchQuery searchQuery = nativeSearchQueryBuilder.build();
    //打印filter 的dsl语句
        log.info(searchQuery.getFilter().toString());
        System.out.println("=================");
        //log.info(searchQuery.get);
        //打印query的 的dsl语句
        System.out.println(nativeSearchQueryBuilder.build().getQuery().toString());
        AggregatedPage<User> esEntityList = estemplate.queryForPage(nativeSearchQueryBuilder.build(), User.class);
        return esEntityList;
    }


完整代码地址: https://github.com/Dr-Water/springdata-es-action

相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。 &nbsp;
目录
相关文章
|
1月前
|
NoSQL Java 数据库连接
《深入理解Spring》Spring Data——数据访问的统一抽象与极致简化
Spring Data通过Repository抽象和方法名派生查询,简化数据访问层开发,告别冗余CRUD代码。支持JPA、MongoDB、Redis等多种存储,统一编程模型,提升开发效率与架构灵活性,是Java开发者必备利器。(238字)
|
1月前
|
存储 Java 关系型数据库
Spring Boot中Spring Data JPA的常用注解
Spring Data JPA通过注解简化数据库操作,实现实体与表的映射。常用注解包括:`@Entity`、`@Table`定义表结构;`@Id`、`@GeneratedValue`配置主键策略;`@Column`、`@Transient`控制字段映射;`@OneToOne`、`@OneToMany`等处理关联关系;`@Enumerated`、`@NamedQuery`支持枚举与命名查询。合理使用可提升开发效率与代码可维护性。(238字)
289 1
存储 JSON Java
480 0
|
2月前
|
SQL Java 数据库连接
Spring Data JPA 技术深度解析与应用指南
本文档全面介绍 Spring Data JPA 的核心概念、技术原理和实际应用。作为 Spring 生态系统中数据访问层的关键组件,Spring Data JPA 极大简化了 Java 持久层开发。本文将深入探讨其架构设计、核心接口、查询派生机制、事务管理以及与 Spring 框架的集成方式,并通过实际示例展示如何高效地使用这一技术。本文档约1500字,适合有一定 Spring 和 JPA 基础的开发者阅读。
328 0
|
4月前
|
NoSQL Java Redis
Redis基本数据类型及Spring Data Redis应用
Redis 是开源高性能键值对数据库,支持 String、Hash、List、Set、Sorted Set 等数据结构,适用于缓存、消息队列、排行榜等场景。具备高性能、原子操作及丰富功能,是分布式系统核心组件。
559 2
|
4月前
|
SQL XML Java
配置Spring框架以连接SQL Server数据库
最后,需要集成Spring配置到应用中,这通常在 `main`方法或者Spring Boot的应用配置类中通过加载XML配置或使用注解来实现。
433 0
|
6月前
|
消息中间件 缓存 NoSQL
基于Spring Data Redis与RabbitMQ实现字符串缓存和计数功能(数据同步)
总的来说,借助Spring Data Redis和RabbitMQ,我们可以轻松实现字符串缓存和计数的功能。而关键的部分不过是一些"厨房的套路",一旦你掌握了这些套路,那么你就像厨师一样可以准备出一道道饕餮美食了。通过这种方式促进数据处理效率无疑将大大提高我们的生产力。
238 32
|
7月前
|
NoSQL 安全 Java
深入理解 RedisConnectionFactory:Spring Data Redis 的核心组件
在 Spring Data Redis 中,`RedisConnectionFactory` 是核心组件,负责创建和管理与 Redis 的连接。它支持单机、集群及哨兵等多种模式,为上层组件(如 `RedisTemplate`)提供连接抽象。Spring 提供了 Lettuce 和 Jedis 两种主要实现,其中 Lettuce 因其线程安全和高性能特性被广泛推荐。通过手动配置或 Spring Boot 自动化配置,开发者可轻松集成 Redis,提升应用性能与扩展性。本文深入解析其作用、实现方式及常见问题解决方法,助你高效使用 Redis。
783 4
|
7月前
|
SQL Java 编译器
深入理解 Spring Data JPA 的导入与使用:以 UserRepository为例
本文深入解析了 Spring Data JPA 中 `UserRepository` 的导入与使用。通过示例代码,详细说明了为何需要导入 `User` 实体类、`JpaRepository` 接口及 `@Repository` 注解。这些导入语句分别用于定义操作实体、提供数据库交互方法和标识数据访问组件。文章还探讨了未导入时的编译问题,并展示了实际应用场景,如用户保存、查询与删除操作。合理使用导入语句,可让代码更简洁高效,充分发挥 Spring Data JPA 的优势。
459 0
|
8月前
|
数据采集 JSON 数据挖掘
Elasticsearch 的DSL查询,聚合查询与多维度数据统计
Elasticsearch的DSL查询与聚合查询提供了强大的数据检索和统计分析能力。通过合理构建DSL查询,用户可以高效地搜索数据,并使用聚合查询对数据进行多维度统计分析。在实际应用中,灵活运用这些工具不仅能提高查询效率,还能为数据分析提供深入洞察。理解并掌握这些技术,将显著提升在大数据场景中的分析和处理能力。
423 20

热门文章

最新文章