C# 面试常见递归算法

简介: C# 面试常见递归算法

前言

今天我们主要总结一下C#面试中常见递归算法。

C#经典十大排序算法(完结)

C#递归算法计算阶乘的方法

一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。

原理:亦即n!=1×2×3×...×(n-1)×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。

/// <summary>
        /// C#递归算法计算阶乘的方法
        /// 一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。
        /// 亦即n!=1×2×3×...×(n-1)×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。
        /// 最终输出结果:120
        /// </summary>
        public static void RecursiveFactorial()
        {
            int result = Factorial(5);
            Console.WriteLine("5的阶乘为:" + result);//5!=120
        }
        public static int Factorial(int n)
        {
            if (n == 0 || n == 1)
            {
                return 1;
            }
            else
            {
                // 递归调用:当前数n乘以前面所有数的阶乘
                return n * Factorial(n - 1);
            }
        }

C#递归算法数组求

/// <summary>
        /// 递归算法数组求
        /// 最终输出结果为:259
        /// </summary>
        public static void RecursiveArraySum()
        {
            int[] numbers = { 1, 88, 66, 4, 100 };
            int sum = ArraySum(numbers, 0);
            Console.WriteLine("数组元素的总和为:" + sum);
        }
        /// <summary>
        /// 计算数组元素的总和
        /// </summary>
        /// <param name="arr">arr</param>
        /// <param name="index">index</param>
        /// <returns></returns>
        public static int ArraySum(int[] arr, int index)
        {
            if (index >= arr.Length)
            {
                // 基本情况:数组为空或者已经遍历完所有元素
                return 0;
            }
            else
            {
                // 递归调用:当前元素加上剩余元素的总和
                return arr[index] + ArraySum(arr, index + 1);
            }
        }

C#使用递归算法来实现求解斐波纳契数列中第30位数的值

一列数的规则如下 : 1 、 1 、 2 、 3 、 5 、 8 、 13 、 21 、 34… 求第 30 位数是多少, 用递归算法实现。

/// <summary>
        /// 使用递归算法来实现求解斐波纳契数列中第30位数的值
        /// 一列数的规则如下 : 1 、 1 、 2 、 3 、 5 、 8 、 13 、 21 、 34… 求第 30 位数是多少, 用递归算法实现
        /// 最终输出结果为:832040
        /// </summary>
        public static void FibonacciSum()
        {
            int n = 30;
            int result = Fibonacci(n);
            Console.WriteLine("第 " + n + "位斐波那契数是:" + result);
        }
        public static int Fibonacci(int n)
        {
            if (n <= 0)
            {
                return 0;
            }
            else if (n > 0 && n <= 2)
            {
                return 1;
            }
            else
            {
                // 递归情况:调用自身计算前两个数字之和
                return Fibonacci(n - 1) + Fibonacci(n - 2);
            }
        }

使用C#语言编写的递归算法来计算1+2+3+4+…+100的结果

/// <summary>
        /// 使用C#语言编写的递归算法来计算1+2+3+4+…+100的结果
        /// 最终输出结果是:5050
        /// </summary>
        public static void RecursiveAlgorithmSum()
        {
            int result = SumNumbers(100);
            Console.WriteLine("1+2+3+4+...+100 = " + result);
        }
        public static int SumNumbers(int n)
        {
            if (n == 1)
            {
                return 1;//递归结束条件
            }
            else
            {
                return n + SumNumbers(n - 1);
            }
        }


相关文章
|
3月前
|
存储 监控 算法
电脑监控管理中的 C# 哈希表进程资源索引算法
哈希表凭借O(1)查询效率、动态增删性能及低内存开销,适配电脑监控系统对进程资源数据的实时索引需求。通过定制哈希函数与链地址法冲突解决,实现高效进程状态追踪与异常预警。
226 10
|
7月前
|
存储 运维 监控
基于 C# 语言的 Dijkstra 算法在局域网内监控软件件中的优化与实现研究
本文针对局域网监控系统中传统Dijkstra算法的性能瓶颈,提出了一种基于优先队列和邻接表优化的改进方案。通过重构数据结构与计算流程,将时间复杂度从O(V²)降至O((V+E)logV),显著提升大规模网络环境下的计算效率与资源利用率。实验表明,优化后算法在包含1000节点、5000链路的网络中,计算时间缩短37.2%,内存占用减少21.5%。该算法适用于网络拓扑发现、异常流量检测、故障定位及负载均衡优化等场景,为智能化局域网监控提供了有效支持。
195 5
|
8月前
|
存储 算法 安全
如何控制上网行为——基于 C# 实现布隆过滤器算法的上网行为管控策略研究与实践解析
在数字化办公生态系统中,企业对员工网络行为的精细化管理已成为保障网络安全、提升组织效能的核心命题。如何在有效防范恶意网站访问、数据泄露风险的同时,避免过度管控对正常业务运作的负面影响,构成了企业网络安全领域的重要研究方向。在此背景下,数据结构与算法作为底层技术支撑,其重要性愈发凸显。本文将以布隆过滤器算法为研究对象,基于 C# 编程语言开展理论分析与工程实践,系统探讨该算法在企业上网行为管理中的应用范式。
252 8
|
8月前
|
存储 监控 算法
解析公司屏幕监控软件中 C# 字典算法的数据管理效能与优化策略
数字化办公的时代背景下,企业为维护信息安全并提升管理效能,公司屏幕监控软件的应用日益普及。此软件犹如企业网络的 “数字卫士”,持续记录员工电脑屏幕的操作动态。然而,伴随数据量的持续增长,如何高效管理这些监控数据成为关键议题。C# 中的字典(Dictionary)数据结构,以其独特的键值对存储模式和高效的操作性能,为公司屏幕监控软件的数据管理提供了有力支持。下文将深入探究其原理与应用。
206 4
|
3月前
|
存储 机器学习/深度学习 监控
网络管理监控软件的 C# 区间树性能阈值查询算法
针对网络管理监控软件的高效区间查询需求,本文提出基于区间树的优化方案。传统线性遍历效率低,10万条数据查询超800ms,难以满足实时性要求。区间树以平衡二叉搜索树结构,结合节点最大值剪枝策略,将查询复杂度从O(N)降至O(logN+K),显著提升性能。通过C#实现,支持按指标类型分组建树、增量插入与多维度联合查询,在10万记录下查询耗时仅约2.8ms,内存占用降低35%。测试表明,该方案有效解决高负载场景下的响应延迟问题,助力管理员快速定位异常设备,提升运维效率与系统稳定性。
260 4
|
9月前
|
机器学习/深度学习 监控 算法
员工上网行为监控软件中基于滑动窗口的C#流量统计算法解析​
在数字化办公环境中,员工上网行为监控软件需要高效处理海量网络请求数据,同时实时识别异常行为(如高频访问非工作网站)。传统的时间序列统计方法因计算复杂度过高,难以满足低延迟需求。本文将介绍一种基于滑动窗口的C#统计算法,通过动态时间窗口管理,实现高效的行为模式分析与流量计数。
285 2
|
9月前
|
人工智能 运维 算法
基于 C# 深度优先搜索算法的局域网集中管理软件技术剖析
现代化办公环境中,局域网集中管理软件是保障企业网络高效运行、实现资源合理分配以及强化信息安全管控的核心工具。此类软件需应对复杂的网络拓扑结构、海量的设备信息及多样化的用户操作,而数据结构与算法正是支撑其强大功能的基石。本文将深入剖析深度优先搜索(Depth-First Search,DFS)算法,并结合 C# 语言特性,详细阐述其在局域网集中管理软件中的应用与实现。
224 3
|
6月前
|
监控 算法 安全
基于 C# 基数树算法的网络屏幕监控敏感词检测技术研究
随着数字化办公和网络交互迅猛发展,网络屏幕监控成为信息安全的关键。基数树(Trie Tree)凭借高效的字符串处理能力,在敏感词检测中表现出色。结合C#语言,可构建高时效、高准确率的敏感词识别模块,提升网络安全防护能力。
168 2
|
7月前
|
监控 算法 数据处理
内网实时监控中的 C# 算法探索:环形缓冲区在实时数据处理中的关键作用
本文探讨了环形缓冲区在内网实时监控中的应用,结合C#实现方案,分析其原理与优势。作为固定长度的循环队列,环形缓冲区通过FIFO机制高效处理高速数据流,具备O(1)时间复杂度的读写操作,降低延迟与内存开销。文章从设计逻辑、代码示例到实际适配效果展开讨论,并展望其与AI结合的潜力,为开发者提供参考。
341 2
|
7月前
|
监控 算法 安全
公司电脑监控软件关键技术探析:C# 环形缓冲区算法的理论与实践
环形缓冲区(Ring Buffer)是企业信息安全管理中电脑监控系统设计的核心数据结构,适用于高并发、高速率与短时有效的多源异构数据处理场景。其通过固定大小的连续内存空间实现闭环存储,具备内存优化、操作高效、数据时效管理和并发支持等优势。文章以C#语言为例,展示了线程安全的环形缓冲区实现,并结合URL访问记录监控应用场景,分析了其在流量削峰、关键数据保护和高性能处理中的适配性。该结构在日志捕获和事件缓冲中表现出色,对提升监控系统效能具有重要价值。
212 1