【Python学习】—Python数据可视化(八)

简介: 【Python学习】—Python数据可视化(八)

一、JSON数据格式

  • JSON是一种轻量级的数据交互格式,可以按照JSON指定的格式去组织和封装数据
  • JSON本质上是 一个带有特定格式的字符串
  • JSON就是一种在各个编程语言中流通的数据格式,负责不同编程语言中的数据传递和交互

Python数据和JSON数据的相互转化

二、pyecharts模块

  • 如果想要做出可视画效果图,可以借助pyecharts模块来完成
  • Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。

pycharts中有哪些配置选项

  • 全局配置选项
  • 系列配置选项


from pyecharts.charts import Line
from pyecharts.options import TitleOpts,LegendOpts,ToolboxOpts,VisualMapOpts
line=Line()
line.add_xaxis(["中国","英国","美国"])
line.add_yaxis("GDP",[30,20,10])
line.set_global_opts(
    title_opts=TitleOpts(title="GDP展示",pos_left="center", pos_bottom="1%"),
    legend_opts=LegendOpts(is_show=True),
    toolbox_opts=ToolboxOpts(is_show=True),
    visualmap_opts=VisualMapOpts(is_show=True)
)
line.render()

总结

三、地图可视化

from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts
map=Map()
data=[
    ("北京市",99),
    ("上海市", 199),
    ("湖南省", 299),
    ("台湾省", 399),
    ("广东省", 499),
]
map.add("测试地图",data,"china")
#设置全局选项
map.set_global_opts(
    visualmap_opts=VisualMapOpts(
        is_show=True,
        is_piecewise=True,
        pieces=[
            {"min":1,"max":9,"label":"1-9","color":'#CCFFFF'},
{"min":10,"max":99,"label":"10-99","color":'pink'},
{"min":100,"max":500,"label":"100-500","color":'red'}]
    )
)
map.render()


四、动态柱状图

from pyecharts.charts import Bar
from pyecharts.options import LabelOpts
bar=Bar()
bar.add_xaxis(["中国","美国","英国"])
bar.add_yaxis("GDP",[30,20,10],label_opts=LabelOpts(
    position="right"
))
#反转xy轴
bar.reversal_axis()
bar.render("基础柱状图.html")

五、时间线柱状图

from pyecharts.charts import Bar,Timeline
from pyecharts.options import LabelOpts
from pyecharts.globals import ThemeType
bar1=Bar()
bar1.add_xaxis(["中国","美国","英国"])
bar1.add_yaxis("GDP",[30,20,10],label_opts=LabelOpts(
    position="right"
))
bar1.reversal_axis()
bar2=Bar()
bar2.add_xaxis(["中国","美国","英国"])
bar2.add_yaxis("GDP",[40,30,20],label_opts=LabelOpts(
    position="right"
))
bar2.reversal_axis()
bar3=Bar()
bar3.add_xaxis(["中国","美国","英国"])
bar3.add_yaxis("GDP",[50,60,40],label_opts=LabelOpts(
    position="right"
))
bar3.reversal_axis()
#构建时间线
timeline=Timeline()
{
        "theme":ThemeType.LIGHT
    }
timeline.add(bar1,"点1")
timeline.add(bar2,"点2")
timeline.add(bar3,"点3")
#设置自动播放
timeline.add_schema(
    play_interval=1000,
    is_timeline_show=True,
    is_auto_play=True,
    is_loop_play=True
)
timeline.render("基础时间线柱状图.html")

六、列表的sort方法


相关文章
|
3天前
|
索引 Python
|
22小时前
|
机器学习/深度学习 数据可视化 TensorFlow
50个Python学习资源,从初学者到高级玩家都有了!
50个Python学习资源,从初学者到高级玩家都有了!
|
23小时前
|
机器人 Java C++
python速成之循环分支结构学习
python速成之循环分支结构学习
|
1天前
|
Python
Python学习10
Python学习10
|
1天前
|
存储 算法 Serverless
Python学习9
Python学习9
|
1天前
|
索引 Python
Python学习8
Python学习8
|
1天前
|
存储 算法 Python
Python学习7
Python学习7
|
1天前
|
机器学习/深度学习 数据采集 算法
Python学习6
Python学习6
|
1天前
|
数据采集 机器学习/深度学习 存储
python学习5
python学习5
|
1天前
|
机器学习/深度学习 算法 开发者
python学习4
python学习4