【Python学习】—Python数据可视化(八)

简介: 【Python学习】—Python数据可视化(八)

一、JSON数据格式

  • JSON是一种轻量级的数据交互格式,可以按照JSON指定的格式去组织和封装数据
  • JSON本质上是 一个带有特定格式的字符串
  • JSON就是一种在各个编程语言中流通的数据格式,负责不同编程语言中的数据传递和交互

Python数据和JSON数据的相互转化

二、pyecharts模块

  • 如果想要做出可视画效果图,可以借助pyecharts模块来完成
  • Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。

pycharts中有哪些配置选项

  • 全局配置选项
  • 系列配置选项


from pyecharts.charts import Line
from pyecharts.options import TitleOpts,LegendOpts,ToolboxOpts,VisualMapOpts
line=Line()
line.add_xaxis(["中国","英国","美国"])
line.add_yaxis("GDP",[30,20,10])
line.set_global_opts(
    title_opts=TitleOpts(title="GDP展示",pos_left="center", pos_bottom="1%"),
    legend_opts=LegendOpts(is_show=True),
    toolbox_opts=ToolboxOpts(is_show=True),
    visualmap_opts=VisualMapOpts(is_show=True)
)
line.render()

总结

三、地图可视化

from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts
map=Map()
data=[
    ("北京市",99),
    ("上海市", 199),
    ("湖南省", 299),
    ("台湾省", 399),
    ("广东省", 499),
]
map.add("测试地图",data,"china")
#设置全局选项
map.set_global_opts(
    visualmap_opts=VisualMapOpts(
        is_show=True,
        is_piecewise=True,
        pieces=[
            {"min":1,"max":9,"label":"1-9","color":'#CCFFFF'},
{"min":10,"max":99,"label":"10-99","color":'pink'},
{"min":100,"max":500,"label":"100-500","color":'red'}]
    )
)
map.render()


四、动态柱状图

from pyecharts.charts import Bar
from pyecharts.options import LabelOpts
bar=Bar()
bar.add_xaxis(["中国","美国","英国"])
bar.add_yaxis("GDP",[30,20,10],label_opts=LabelOpts(
    position="right"
))
#反转xy轴
bar.reversal_axis()
bar.render("基础柱状图.html")

五、时间线柱状图

from pyecharts.charts import Bar,Timeline
from pyecharts.options import LabelOpts
from pyecharts.globals import ThemeType
bar1=Bar()
bar1.add_xaxis(["中国","美国","英国"])
bar1.add_yaxis("GDP",[30,20,10],label_opts=LabelOpts(
    position="right"
))
bar1.reversal_axis()
bar2=Bar()
bar2.add_xaxis(["中国","美国","英国"])
bar2.add_yaxis("GDP",[40,30,20],label_opts=LabelOpts(
    position="right"
))
bar2.reversal_axis()
bar3=Bar()
bar3.add_xaxis(["中国","美国","英国"])
bar3.add_yaxis("GDP",[50,60,40],label_opts=LabelOpts(
    position="right"
))
bar3.reversal_axis()
#构建时间线
timeline=Timeline()
{
        "theme":ThemeType.LIGHT
    }
timeline.add(bar1,"点1")
timeline.add(bar2,"点2")
timeline.add(bar3,"点3")
#设置自动播放
timeline.add_schema(
    play_interval=1000,
    is_timeline_show=True,
    is_auto_play=True,
    is_loop_play=True
)
timeline.render("基础时间线柱状图.html")

六、列表的sort方法


相关文章
|
4天前
|
Python 容器
Python学习的自我理解和想法(9)
这是我在B站跟随千锋教育学习Python的第9天,主要学习了赋值、浅拷贝和深拷贝的概念及其底层逻辑。由于开学时间紧张,内容较为简略,但希望能帮助理解这些重要概念。赋值是创建引用,浅拷贝创建新容器但元素仍引用原对象,深拷贝则创建完全独立的新对象。希望对大家有所帮助,欢迎讨论。
|
6天前
|
存储 索引 Python
Python学习的自我理解和想法(6)
这是我在B站千锋教育学习Python的第6天笔记,主要学习了字典的使用方法,包括字典的基本概念、访问、修改、添加、删除元素,以及获取字典信息、遍历字典和合并字典等内容。开学后时间有限,内容较为简略,敬请谅解。
|
10天前
|
存储 程序员 Python
Python学习的自我理解和想法(2)
今日学习Python第二天,重点掌握字符串操作。内容涵盖字符串介绍、切片、长度统计、子串计数、大小写转换及查找位置等。通过B站黑马程序员课程跟随老师实践,非原创代码,旨在巩固基础知识与技能。
|
9天前
|
程序员 Python
Python学习的自我理解和想法(3)
这是学习Python第三天的内容总结,主要围绕字符串操作展开,包括字符串的提取、分割、合并、替换、判断、编码及格式化输出等,通过B站黑马程序员课程跟随老师实践,非原创代码。
|
6天前
|
Python
Python学习的自我理解和想法(7)
学的是b站的课程(千锋教育),跟老师写程序,不是自创的代码! 今天是学Python的第七天,学的内容是集合。开学了,时间不多,写得不多,见谅。
|
4天前
|
存储 安全 索引
Python学习的自我理解和想法(8)
这是我在B站千锋教育学习Python的第8天,主要内容是元组。元组是一种不可变的序列数据类型,用于存储一组有序的元素。本文介绍了元组的基本操作,包括创建、访问、合并、切片、遍历等,并总结了元组的主要特点,如不可变性、有序性和可作为字典的键。由于开学时间紧张,内容较为简略,望见谅。
|
6天前
|
存储 索引 Python
Python学习的自我理解和想法(4)
今天是学习Python的第四天,主要学习了列表。列表是一种可变序列类型,可以存储任意类型的元素,支持索引和切片操作,并且有丰富的内置方法。主要内容包括列表的入门、关键要点、遍历、合并、判断元素是否存在、切片、添加和删除元素等。通过这些知识点,可以更好地理解和应用列表这一强大的数据结构。
|
6天前
|
索引 Python
Python学习的自我理解和想法(5)
这是我在B站千锋教育学习Python的第五天笔记,主要内容包括列表的操作,如排序(`sort()`、``sorted()``)、翻转(`reverse()`)、获取长度(`len()`)、最大最小值(`max()`、``min()``)、索引(`index()`)、嵌套列表和列表生成(`range`、列表生成式)。通过这些操作,可以更高效地处理数据。希望对大家有所帮助!
|
12天前
|
安全 程序员 Python
Python学习的自我理解和想法(1)
本篇博客记录了作者跟随B站“黑马程序员”课程学习Python的第一天心得,涵盖了`print()`、`input()`、`if...else`语句、三目运算符以及`for`和`while`循环的基础知识。通过实际编写代码,作者逐步理解并掌握了这些基本概念,为后续深入学习打下了良好基础。文中还特别强调了循环语句的重要性及其应用技巧。
|
16天前
|
数据可视化 Python
使用Python进行数据可视化的初学者指南
在数据的海洋里,我们如何能够不迷失方向?通过数据可视化的力量,我们可以将复杂的数据集转化为易于理解的图形和图表。本文旨在为初学者提供一份简明的入门手册,介绍如何使用Python中的Matplotlib库来揭示数据背后的故事。我们将从基础的图表开始,逐步深入到更高级的可视化技术,确保每个步骤都清晰易懂,让初学者也能轻松上手。让我们开始绘制属于你自己的数据图谱吧!