百度搜索:蓝易云【用docker搭建selenium grid分布式环境实践】

本文涉及的产品
轻量应用服务器 2vCPU 1GiB,适用于搭建电商独立站
无影云电脑个人版,1个月黄金款+200核时
无影云电脑企业版,8核16GB 120小时 1个月
简介: 通过这些步骤,您可以使用Docker搭建Selenium Grid分布式环境,并在多个节点上并行运行Selenium测试。根据实际需求,您还可以进行更高级的配置和扩展,如增加更多的节点、配置浏览器版本等。

以下是使用Docker搭建Selenium Grid分布式环境的实践步骤:

  1. 安装Docker:首先,确保您已经安装了Docker引擎。可以根据您的操作系统选择适当的安装方法并完成安装。
  2. 编写Docker Compose文件:创建一个名为docker-compose.yml的文件,并使用以下内容进行编写:
version: '3'
services:
  hub:
    image: selenium/hub
    ports:
      - 4444:4444
  chrome:
    image: selenium/node-chrome
    depends_on:
      - hub
    environment:
      - HUB_HOST=hub
  firefox:
    image: selenium/node-firefox
    depends_on:
      - hub
    environment:
      - HUB_HOST=hub
  1. 启动Selenium Grid环境:在终端中,导航到包含docker-compose.yml文件的目录,并运行以下命令来启动Selenium Grid环境:
docker-compose up -d

这将下载并启动所需的镜像,并创建一个包含Selenium Hub和两个节点(一个Chrome节点和一个Firefox节点)的分布式环境。

  1. 验证环境:在浏览器中访问http://localhost:4444/grid/console,您将看到Selenium Grid的控制台页面,显示已配置的节点和其可用性。
  2. 运行测试:现在您可以在分布式环境中运行Selenium测试。在测试代码中,指定Selenium Grid的URL为http://localhost:4444/wd/hub,并选择所需的浏览器(Chrome或Firefox)。

通过这些步骤,您可以使用Docker搭建Selenium Grid分布式环境,并在多个节点上并行运行Selenium测试。根据实际需求,您还可以进行更高级的配置和扩展,如增加更多的节点、配置浏览器版本等。

目录
相关文章
|
1月前
|
Kubernetes Docker Python
Docker 与 Kubernetes 容器化部署核心技术及企业级应用实践全方案解析
本文详解Docker与Kubernetes容器化技术,涵盖概念原理、环境搭建、镜像构建、应用部署及监控扩展,助你掌握企业级容器化方案,提升应用开发与运维效率。
437 108
|
8天前
|
弹性计算 关系型数据库 微服务
基于 Docker 与 Kubernetes(K3s)的微服务:阿里云生产环境扩容实践
在微服务架构中,如何实现“稳定扩容”与“成本可控”是企业面临的核心挑战。本文结合 Python FastAPI 微服务实战,详解如何基于阿里云基础设施,利用 Docker 封装服务、K3s 实现容器编排,构建生产级微服务架构。内容涵盖容器构建、集群部署、自动扩缩容、可观测性等关键环节,适配阿里云资源特性与服务生态,助力企业打造低成本、高可靠、易扩展的微服务解决方案。
1196 4
|
18天前
|
缓存 安全 Linux
优化Docker镜像大小的多阶段构建实践
优化Docker镜像大小的多阶段构建实践
179 99
|
4月前
|
人工智能 安全 应用服务中间件
阿里巴巴 MCP 分布式落地实践:快速转换 HSF 到 MCP server
本文分享了阿里巴巴内部将大规模HSF服务快速转换为MCP Server的实践经验,通过Higress网关实现MCP协议卸载,无需修改代码即可接入MCP生态。文章分析了MCP生态面临的挑战,如协议快速迭代和SDK不稳定性,并详细介绍了操作步骤及组件功能。强调MCP虽非终极解决方案,但作为AI业务工程化的起点具有重要意义。最后总结指出,MCP只是AI原生应用发展的第一步,未来还有更多可能性值得探索。
1037 48
|
8天前
|
消息中间件 缓存 监控
中间件架构设计与实践:构建高性能分布式系统的核心基石
摘要 本文系统探讨了中间件技术及其在分布式系统中的核心价值。作者首先定义了中间件作为连接系统组件的"神经网络",强调其在数据传输、系统稳定性和扩展性中的关键作用。随后详细分类了中间件体系,包括通信中间件(如RabbitMQ/Kafka)、数据中间件(如Redis/MyCAT)等类型。文章重点剖析了消息中间件的实现机制,通过Spring Boot代码示例展示了消息生产者的完整实现,涵盖消息ID生成、持久化、批量发送及重试机制等关键技术点。最后,作者指出中间件架构设计对系统性能的决定性影响,
38 1
|
5月前
|
数据采集 前端开发 JavaScript
Scrapy结合Selenium实现搜索点击爬虫的最佳实践
Scrapy结合Selenium实现搜索点击爬虫的最佳实践
|
4月前
|
监控 Linux 应用服务中间件
Linux多节点多硬盘部署MinIO:分布式MinIO集群部署指南搭建高可用架构实践
通过以上步骤,已成功基于已有的 MinIO 服务,扩展为一个 MinIO 集群。该集群具有高可用性和容错性,适合生产环境使用。如果有任何问题,请检查日志或参考MinIO 官方文档。作者联系方式vx:2743642415。
1332 57
|
4月前
|
安全 JavaScript 前端开发
HarmonyOS NEXT~HarmonyOS 语言仓颉:下一代分布式开发语言的技术解析与应用实践
HarmonyOS语言仓颉是华为专为HarmonyOS生态系统设计的新型编程语言,旨在解决分布式环境下的开发挑战。它以“编码创造”为理念,具备分布式原生、高性能与高效率、安全可靠三大核心特性。仓颉语言通过内置分布式能力简化跨设备开发,提供统一的编程模型和开发体验。文章从语言基础、关键特性、开发实践及未来展望四个方面剖析其技术优势,助力开发者掌握这一新兴工具,构建全场景分布式应用。
474 35
|
5月前
|
存储 负载均衡 测试技术
ACK Gateway with Inference Extension:优化多机分布式大模型推理服务实践
本文介绍了如何利用阿里云容器服务ACK推出的ACK Gateway with Inference Extension组件,在Kubernetes环境中为多机分布式部署的LLM推理服务提供智能路由和负载均衡能力。文章以部署和优化QwQ-32B模型为例,详细展示了从环境准备到性能测试的完整实践过程。
|
6月前
|
并行计算 PyTorch 算法框架/工具
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
本文探讨了如何通过技术手段混合使用AMD与NVIDIA GPU集群以支持PyTorch分布式训练。面对CUDA与ROCm框架互操作性不足的问题,文章提出利用UCC和UCX等统一通信框架实现高效数据传输,并在异构Kubernetes集群中部署任务。通过解决轻度与强度异构环境下的挑战,如计算能力不平衡、内存容量差异及通信性能优化,文章展示了如何无需重构代码即可充分利用异构硬件资源。尽管存在RDMA验证不足、通信性能次优等局限性,但该方案为最大化GPU资源利用率、降低供应商锁定提供了可行路径。源代码已公开,供读者参考实践。
473 3
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践