Python 教程之 Pandas(12)—— series 的二元运算

简介: Python 教程之 Pandas(12)—— series 的二元运算

series 的二元运算

我们可以对序列进行二元运算,如加法、减法和许多其他操作。为了对系列执行二元运算,我们必须使用一些函数,比如.add().sub()等等。

代码#1:

# importing pandas module  
import pandas as pd  
# 创建一个 series
data = pd.Series([5, 2, 3,7], index=['a', 'b', 'c', 'd'])
# 创建一个 series
data1 = pd.Series([1, 6, 4, 9], index=['a', 'b', 'd', 'e'])
print(data, "\n\n", data1)

image.png

.add()现在我们使用函数添加两个 series。

# 使用 .add 添加两个 series
data.add(data1, fill_value=0)

输出:

image.png

代码 #2:

# importing pandas module  
import pandas as pd  
# 创建一个 series
data = pd.Series([5, 2, 3,7], index=['a', 'b', 'c', 'd'])
# 创建一个 series
data1 = pd.Series([1, 6, 4, 9], index=['a', 'b', 'd', 'e'])
print(data, "\n\n", data1)

image.png

现在我们使用.sub函数减去两个系列。

# 使用 .sub 减去两个 series
data.sub(data1, fill_value=0)

输出:

image.png

series 上的二元运算方法:

image.png

感谢大家的阅读,有什么问题的话可以在评论中告诉我。希望大家能够给我来个点赞+收藏+评论 ,你的支持是海海更新的动力!后面我会持续分享前端 & 后端相关的专业知识。

目录
相关文章
|
24天前
|
Python
python pandas学习(一)
该代码段展示了四个主要操作:1) 删除指定列名,如商品id;2) 使用正则表达式模糊匹配并删除列,例如匹配订单商品名称1的列;3) 将毫秒级时间戳转换为带有时区调整的日期时间格式,并增加8小时以适应本地时区;4) 将列表转换为DataFrame后保存为Excel文件,文件路径和名称根据变量拼接而成。
26 3
|
2月前
|
存储 数据挖掘 数据处理
Python Pandas入门:行与列快速上手与优化技巧
Pandas是Python中强大的数据分析库,广泛应用于数据科学和数据分析领域。本文为初学者介绍Pandas的基本操作,包括安装、创建DataFrame、行与列的操作及优化技巧。通过实例讲解如何选择、添加、删除行与列,并提供链式操作、向量化处理、索引优化等高效使用Pandas的建议,帮助用户在实际工作中更便捷地处理数据。
57 2
|
4月前
|
机器学习/深度学习 存储 数据挖掘
Python 编程入门:理解变量、数据类型和基本运算
【10月更文挑战第43天】在编程的海洋中,Python是一艘易于驾驭的小船。本文将带你启航,探索Python编程的基础:变量的声明与使用、丰富的数据类型以及如何通过基本运算符来操作它们。我们将从浅显易懂的例子出发,逐步深入到代码示例,确保即使是零基础的读者也能跟上步伐。准备好了吗?让我们开始吧!
66 0
|
4月前
|
数据采集 数据可视化 数据处理
Python数据科学:Pandas库入门与实践
Python数据科学:Pandas库入门与实践
|
4月前
|
数据采集 数据可视化 数据挖掘
Python数据分析:Pandas库实战指南
Python数据分析:Pandas库实战指南
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
4月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
4月前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
4月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
81 2
|
4月前
|
SQL 数据采集 数据挖掘
Pandas 教程
10月更文挑战第25天
98 2

热门文章

最新文章