Python 教程之 Pandas(13)—— series 上的转换操作

简介: Python 教程之 Pandas(13)—— series 上的转换操作

series 上的转换操作

在转换操作中,我们执行各种操作,例如更改系列的数据类型,将系列更改为列表等。为了执行转换操作,我们有各种有助于转换的功能,例如.astype().tolist()

代码#1:

# 使用 astype 转换 series 数据类型的 Python 程序
# importing pandas module  
import pandas as pd 
# 从 url 读取 csv 文件  
data = pd.read_csv("nba.csv") 
# 删除空值列以避免错误
data.dropna(inplace = True) 
# 在转换之前存储 dtype
before = data.dtypes 
# 使用 astype 转换 dtypes
data["Salary"]= data["Salary"].astype(int) 
data["Number"]= data["Number"].astype(str) 
# 转换后存储 dtype
after = data.dtypes 
# 打印出来比较
print("BEFORE CONVERSION\n", before, "\n") 
print("AFTER CONVERSION\n", after, "\n") 

输出:

image.png

代码 #2:

# Python程序将 series 转换为列表
# 导入 pandas 模块  
import pandas as pd  
# 导入 regex 模块 
import re 
# 制作数据框 
data = pd.read_csv("nba.csv")  
# 删除空值以避免错误
data.dropna(inplace = True)  
# 操作前存储 dtype
dtype_before = type(data["Salary"]) 
# 转换为列表
salary_list = data["Salary"].tolist() 
# 操作后存储dtype
dtype_after = type(salary_list) 
# 打印数据类型
print("Data type before converting = {}\nData type after converting = {}"
      .format(dtype_before, dtype_after)) 
# 显示列表
salary_list 

输出 :

image.png

Pandas series 方法:

image.png

image.png

image.png

感谢大家的阅读,有什么问题的话可以在评论中告诉我。希望大家能够给我来个点赞+收藏+评论 ,你的支持是海海更新的动力!后面我会持续分享前端 & 后端相关的专业知识。

目录
相关文章
|
9月前
|
存储 数据挖掘 数据处理
掌握Pandas核心数据结构:Series与DataFrame的四种创建方式
本文介绍了 Pandas 库中核心数据结构 Series 和 DataFrame 的四种创建方法,包括从列表、字典、标量和 NumPy 数组创建 Series,以及从字典、列表的列表、NumPy 数组和 Series 字典创建 DataFrame,通过示例详细说明了每种创建方式的具体应用。
651 67
|
7月前
|
Python
python pandas学习(一)
该代码段展示了四个主要操作:1) 删除指定列名,如商品id;2) 使用正则表达式模糊匹配并删除列,例如匹配订单商品名称1的列;3) 将毫秒级时间戳转换为带有时区调整的日期时间格式,并增加8小时以适应本地时区;4) 将列表转换为DataFrame后保存为Excel文件,文件路径和名称根据变量拼接而成。
92 3
|
8月前
|
存储 数据挖掘 数据处理
Python Pandas入门:行与列快速上手与优化技巧
Pandas是Python中强大的数据分析库,广泛应用于数据科学和数据分析领域。本文为初学者介绍Pandas的基本操作,包括安装、创建DataFrame、行与列的操作及优化技巧。通过实例讲解如何选择、添加、删除行与列,并提供链式操作、向量化处理、索引优化等高效使用Pandas的建议,帮助用户在实际工作中更便捷地处理数据。
202 2
|
9月前
|
存储 数据挖掘 索引
Pandas数据结构:Series与DataFrame
本文介绍了 Python 的 Pandas 库中两种主要数据结构 `Series` 和 ``DataFrame`,从基础概念入手,详细讲解了它们的创建、常见问题及解决方案,包括数据缺失处理、数据类型转换、重复数据删除、数据筛选、排序、聚合和合并等操作。同时,还提供了常见报错及解决方法,帮助读者更好地理解和使用 Pandas 进行数据分析。
645 10
|
9月前
|
存储 数据挖掘 索引
Pandas Series 和 DataFrame 常用属性详解及实例
Pandas 是 Python 数据分析的重要工具,其核心数据结构 Series 和 DataFrame 广泛应用。本文详细介绍了这两种结构的常用属性,如 `index`、`values`、`dtype` 等,并通过具体示例帮助读者更好地理解和使用这些属性,提升数据分析效率。
401 4
|
10月前
|
数据采集 数据可视化 数据处理
Python数据科学:Pandas库入门与实践
Python数据科学:Pandas库入门与实践
|
10月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
10月前
|
数据采集 数据可视化 数据挖掘
Python数据分析:Pandas库实战指南
Python数据分析:Pandas库实战指南
|
10月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
10月前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南

推荐镜像

更多