车联网案例,轨迹清洗 - 阿里云RDS PostgreSQL最佳实践 - 窗口查询

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
云数据库 RDS SQL Server,基础系列 2核4GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介:

标签

PostgreSQL , 窗口函数 , 车联网 , 轨迹 , 轨迹清洗 , lag , lead


背景

车联网中一个非常典型的场景是采集车辆的行驶轨迹,通常来说车辆的轨迹并不会实时上报,可能会堆积若干条轨迹记录,或者间隔多少时间上报一次。

一个典型的数据结构如下

(car_id, pos geometry, crt_time timestamp)  

车辆在行驶,行驶过程中会遇到堵车,红绿灯,那么上报的轨迹记录可能是这样的

1, 位置1, '2017-01-01 12:00:00'  
1, 位置1, '2017-01-01 12:00:05'  
1, 位置1, '2017-01-01 12:00:10'  
1, 位置1, '2017-01-01 12:00:15'  
1, 位置1, '2017-01-01 12:00:20'  
1, 位置2, '2017-01-01 12:00:30'  

也就是说,在同一个位置,因为堵车、等红灯,可能会导致上传多条记录。

那么就涉及到在数据库中清洗不必要的等待记录的需求,在一个点,我们最多保留2条记录,表示到达这个位置和离开这个位置。

这个操作可以使用窗口函数实现。

当然从最佳效率角度来分析,轨迹清洗这个事情,在终端做是更合理的,一个位置的起始点,只留两条。

例子

1、设计表结构

create table car_trace (cid int, pos point, crt_time timestamp);  

2、生成1000万测试数据,假设有1000量车,(为了让数据更容易出现重复,为了测试看效果,位置使用25个点)

insert into car_trace select random()*999, point((random()*5)::int, (random()*5)::int), clock_timestamp() from generate_series(1,10000000);  

3、创建索引

create index idx_car on car_trace (cid, crt_time);  

4、查询数据layout

select * from car_trace where cid=1 order by crt_time limit 1000;  
  
   1 | (3,1) | 2017-07-22 21:30:09.84984  
   1 | (1,4) | 2017-07-22 21:30:09.850297  
   1 | (1,4) | 2017-07-22 21:30:09.852586  
   1 | (1,4) | 2017-07-22 21:30:09.854155  
   1 | (1,4) | 2017-07-22 21:30:09.854425  
   1 | (3,1) | 2017-07-22 21:30:09.854493  
  
观察到了几个重复。  

5、使用窗口过滤单一位置记录,最多仅保留到达这个位置和离开这个位置的两条记录。

这里用到两个窗口函数:

lag,表示当前记录的前面一条记录。

lead,表示当前记录的下一条记录。

判断到达点、离去点的方法如下:

  • 当前pos 不等于 前一条pos,说明这条记录是当前位置的到达点。

  • 当前pos 不等于 下一条pos,说明这条记录是当前位置的离去点。

  • 前一条pos 为空,说明这条记录是第一条记录。

  • 下一条pos 为空,说明这条记录是最后一条记录。

select * from   
(  
select   
  *,   
  lag(pos) over (partition by cid order by crt_time) as lag,   
  lead(pos) over (partition by cid order by crt_time) as lead   
from car_trace   
  where cid=1   
  and crt_time between '2017-07-22 21:30:09.83994' and '2017-07-22 21:30:09.859735'  
) t  
  where pos <> lag  
  or pos <> lead  
  or lag is null  
  or lead is null;  
  
 cid |  pos  |          crt_time          |  lag  | lead    
-----+-------+----------------------------+-------+-------  
   1 | (2,1) | 2017-07-22 21:30:09.83994  |       | (3,1)  
   1 | (3,1) | 2017-07-22 21:30:09.839953 | (2,1) | (5,2)  
   1 | (5,2) | 2017-07-22 21:30:09.840704 | (3,1) | (4,4)  
   1 | (4,4) | 2017-07-22 21:30:09.84179  | (5,2) | (5,2)  
   1 | (5,2) | 2017-07-22 21:30:09.843787 | (4,4) | (1,5)  
   1 | (1,5) | 2017-07-22 21:30:09.844165 | (5,2) | (0,5)  
   1 | (0,5) | 2017-07-22 21:30:09.84536  | (1,5) | (4,1)  
   1 | (4,1) | 2017-07-22 21:30:09.845896 | (0,5) | (3,3)  
   1 | (3,3) | 2017-07-22 21:30:09.846958 | (4,1) | (3,1)  
   1 | (3,1) | 2017-07-22 21:30:09.84984  | (3,3) | (1,4)  
   1 | (1,4) | 2017-07-22 21:30:09.850297 | (3,1) | (1,4)  
   1 | (1,4) | 2017-07-22 21:30:09.854425 | (1,4) | (3,1)  
   1 | (3,1) | 2017-07-22 21:30:09.854493 | (1,4) | (3,2)  
   1 | (3,2) | 2017-07-22 21:30:09.854541 | (3,1) | (2,0)  
   1 | (2,0) | 2017-07-22 21:30:09.855297 | (3,2) | (4,1)  
   1 | (4,1) | 2017-07-22 21:30:09.857592 | (2,0) | (4,1)  
   1 | (4,1) | 2017-07-22 21:30:09.857595 | (4,1) | (0,4)  
   1 | (0,4) | 2017-07-22 21:30:09.857597 | (4,1) | (3,1)  
   1 | (3,1) | 2017-07-22 21:30:09.858996 | (0,4) | (3,1)  
   1 | (3,1) | 2017-07-22 21:30:09.859735 | (3,1) |   
(20 rows)  

未加清洗轨迹,得到的结果如下:

select   
  *,   
  lag(pos) over (partition by cid order by crt_time) as lag,   
  lead(pos) over (partition by cid order by crt_time) as lead   
from car_trace   
  where cid=1   
  and crt_time between '2017-07-22 21:30:09.83994' and '2017-07-22 21:30:09.859735';  
  
 cid |  pos  |          crt_time          |  lag  | lead    
-----+-------+----------------------------+-------+-------  
   1 | (2,1) | 2017-07-22 21:30:09.83994  |       | (3,1)  
   1 | (3,1) | 2017-07-22 21:30:09.839953 | (2,1) | (5,2)  
   1 | (5,2) | 2017-07-22 21:30:09.840704 | (3,1) | (4,4)  
   1 | (4,4) | 2017-07-22 21:30:09.84179  | (5,2) | (5,2)  
   1 | (5,2) | 2017-07-22 21:30:09.843787 | (4,4) | (1,5)  
   1 | (1,5) | 2017-07-22 21:30:09.844165 | (5,2) | (0,5)  
   1 | (0,5) | 2017-07-22 21:30:09.84536  | (1,5) | (4,1)  
   1 | (4,1) | 2017-07-22 21:30:09.845896 | (0,5) | (3,3)  
   1 | (3,3) | 2017-07-22 21:30:09.846958 | (4,1) | (3,1)  
   1 | (3,1) | 2017-07-22 21:30:09.84984  | (3,3) | (1,4)  
   1 | (1,4) | 2017-07-22 21:30:09.850297 | (3,1) | (1,4)  
   1 | (1,4) | 2017-07-22 21:30:09.852586 | (1,4) | (1,4)  
   1 | (1,4) | 2017-07-22 21:30:09.854155 | (1,4) | (1,4)  
   1 | (1,4) | 2017-07-22 21:30:09.854425 | (1,4) | (3,1)  
   1 | (3,1) | 2017-07-22 21:30:09.854493 | (1,4) | (3,2)  
   1 | (3,2) | 2017-07-22 21:30:09.854541 | (3,1) | (2,0)  
   1 | (2,0) | 2017-07-22 21:30:09.855297 | (3,2) | (4,1)  
   1 | (4,1) | 2017-07-22 21:30:09.857592 | (2,0) | (4,1)  
   1 | (4,1) | 2017-07-22 21:30:09.857595 | (4,1) | (0,4)  
   1 | (0,4) | 2017-07-22 21:30:09.857597 | (4,1) | (3,1)  
   1 | (3,1) | 2017-07-22 21:30:09.858996 | (0,4) | (3,1)  
   1 | (3,1) | 2017-07-22 21:30:09.859735 | (3,1) |   
(22 rows)  

使用lag, lead清洗掉了停留过程中的记录。

被跟踪对象散落导致的扫描IO放大的优化

因为业务中涉及的车辆ID可能较多,不同车辆汇聚的数据会往数据库中写入,如果不做任何优化,那么不同车辆的数据进入数据库后,可能是交错存放的,也就是说一个数据块中,可能有不同车辆的数据。

那么在查询单一车辆的轨迹时,会扫描很多数据块(扫描IO放大)。

优化思路有两种。

1、业务端汇聚分组排序后写入数据库。例如程序在接收到车辆终端提交的数据后,按车辆ID分组,按时间排序,写入数据库(insert into tbl values (),(),...();)。这样的话,同样车辆的数据,可能会尽可能的落在同一个数据块内。

2、数据库端使用分区,重组数据。例如,按车辆ID,每辆车、或者车辆HASH分区存放。

以上两种方法,都是要将数据按查询需求重组,从而达到降低扫描IO的目的。

这个方法与《PostgreSQL 证券行业数据库需求分析与应用》的方法类似,有兴趣的朋友可以参考。

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
4月前
|
存储 关系型数据库 MySQL
MySQL——数据库备份上传到阿里云OSS存储
MySQL——数据库备份上传到阿里云OSS存储
173 0
|
24天前
|
SQL DataWorks 关系型数据库
阿里云 DataWorks 正式支持 SelectDB & Apache Doris 数据源,实现 MySQL 整库实时同步
阿里云数据库 SelectDB 版是阿里云与飞轮科技联合基于 Apache Doris 内核打造的现代化数据仓库,支持大规模实时数据上的极速查询分析。通过实时、统一、弹性、开放的核心能力,能够为企业提供高性价比、简单易用、安全稳定、低成本的实时大数据分析支持。SelectDB 具备世界领先的实时分析能力,能够实现秒级的数据实时导入与同步,在宽表、复杂多表关联、高并发点查等不同场景下,提供超越一众国际知名的同类产品的优秀性能,多次登顶 ClickBench 全球数据库分析性能排行榜。
|
5月前
|
人工智能 关系型数据库 MySQL
基于阿里云的PolarDB MySQL版实现AI增强数据管理
本文将介绍如何利用阿里云的PolarDB MySQL版结合AI技术,实现数据管理的自动化和智能化。
329 0
|
2月前
|
关系型数据库 MySQL 数据库
MySQL数据库:基础概念、应用与最佳实践
一、引言随着互联网技术的快速发展,数据库管理系统在现代信息系统中扮演着核心角色。在众多数据库管理系统中,MySQL以其开源、稳定、可靠以及跨平台的特性受到了广泛的关注和应用。本文将详细介绍MySQL数据库的基本概念、特性、应用领域以及最佳实践,帮助读者更好地理解和应用MySQL数据库。二、MySQL
120 5
|
2月前
|
人工智能 自然语言处理 关系型数据库
阿里云云原生数据仓库 AnalyticDB PostgreSQL 版已完成和开源LLMOps平台Dify官方集成
近日,阿里云云原生数据仓库 AnalyticDB PostgreSQL 版已完成和开源LLMOps平台Dify官方集成。
|
5月前
|
缓存 运维 关系型数据库
数据库容灾 | MySQL MGR与阿里云PolarDB-X Paxos的深度对比
经过深入的技术剖析与性能对比,PolarDB-X DN凭借其自研的X-Paxos协议和一系列优化设计,在性能、正确性、可用性及资源开销等方面展现出对MySQL MGR的多项优势,但MGR在MySQL生态体系内也占据重要地位,但需要考虑备库宕机抖动、跨机房容灾性能波动、稳定性等各种情况,因此如果想用好MGR,必须配备专业的技术和运维团队的支持。 在面对大规模、高并发、高可用性需求时,PolarDB-X存储引擎以其独特的技术优势和优异的性能表现,相比于MGR在开箱即用的场景下,PolarDB-X基于DN的集中式(标准版)在功能和性能都做到了很好的平衡,成为了极具竞争力的数据库解决方案。
|
4月前
|
关系型数据库 MySQL 网络安全
阿里云安装Mysql
阿里云安装Mysql
263 1
|
4月前
|
关系型数据库 MySQL 数据库连接
绝对干货!从MySQL5.7平滑升级到MySQL8.0的最佳实践分享
绝对干货!从MySQL5.7平滑升级到MySQL8.0的最佳实践分享
194 0
|
5月前
|
关系型数据库 MySQL Serverless
体验阿里云PolarDB MySQL Serverless集群
体验阿里云PolarDB MySQL Serverless集群
|
5月前
|
网络协议 关系型数据库 MySQL
【最佳实践】MySQL数据库迁移到PXC集群
借本次数据库迁移实践,再次总结一下MySQL数据库迁移到PXC的最佳操作路径。
103 0

相关产品

  • 云数据库 RDS
  • 云数据库 RDS PostgreSQL 版
  • 云数据库 RDS MySQL 版
  • 下一篇
    无影云桌面