Python 教程之 Numpy(9)—— 二元运算

简介: Python 教程之 Numpy(9)—— 二元运算

二元运算符作用于位,进行逐位运算。二元运算只是组合两个值以创建新值的规则。

numpy.bitwise_and(): 此函数用于计算两个数组元素的按位与。 此函数计算输入数组中整数的底层二进制表示的按位与。

代码#1:

# 解释 bitwise_and() 函数的 Python 程序
import numpy as geek
in_num1 = 10
in_num2 = 11
print ("Input  number1 : ", in_num1)
print ("Input  number2 : ", in_num2) 
out_num = geek.bitwise_and(in_num1, in_num2) 
print ("bitwise_and of 10 and 11 : ", out_num) 

在 IDE 上运行

输出 :

Input  number1 :  10
Input  number2 :  11
bitwise_and of 10 and 11 :  10

代码#2:

# 解释 bitwise_and() 函数的 Python 程序
import numpy as geek
in_arr1 = [2, 8, 125]
in_arr2 = [3, 3, 115]
print ("Input array1 : ", in_arr1) 
print ("Input array2 : ", in_arr2)
out_arr = geek.bitwise_and(in_arr1, in_arr2) 
print ("Output array after bitwise_and: ", out_arr) 

在 IDE 上运行

输出 :

Input array1 :  [2, 8, 125]
Input array2 :  [3, 3, 115]
Output array after bitwise_and:  [  2   0 113]

numpy.bitwise_or(): 此函数用于计算两个数组元素的按位或。 此函数计算输入数组中整数的底层二进制表示的按位或。

代码#1:

# 解释 bitwise_or() 函数的 Python 程序
import numpy as geek
in_num1 = 10
in_num2 = 11
print ("Input  number1 : ", in_num1)
print ("Input  number2 : ", in_num2) 
out_num = geek.bitwise_or(in_num1, in_num2) 
print ("bitwise_or of 10 and 11 : ", out_num) 

在 IDE 上运行

输出 :

Input  number1 :  10
Input  number2 :  11
bitwise_or of 10 and 11 :  11

代码#2:

# 解释 bitwise_or() 函数的 Python 程序
import numpy as geek
in_arr1 = [2, 8, 125]
in_arr2 = [3, 3, 115]
print ("Input array1 : ", in_arr1) 
print ("Input array2 : ", in_arr2)
out_arr = geek.bitwise_or(in_arr1, in_arr2) 
print ("Output array after bitwise_or: ", out_arr) 

在 IDE 上运行

输出 :

Input array1 :  [2, 8, 125]
Input array2 :  [3, 3, 115]
Output array after bitwise_or:  [  3  11 127]

numpy.bitwise_xor(): 此函数用于计算两个数组元素的按位异或。 此函数计算输入数组中整数的底层二进制表示的按位异或。

代码#1:

# 解释 bitwise_xor() 函数的 Python 程序
import numpy as geek
in_num1 = 10
in_num2 = 11
print ("Input  number1 : ", in_num1)
print ("Input  number2 : ", in_num2) 
out_num = geek.bitwise_xor(in_num1, in_num2) 
print ("bitwise_xor of 10 and 11 : ", out_num) 

在 IDE 上运行

输出 :

Input  number1 :  10
Input  number2 :  11
bitwise_xor of 10 and 11 :  1

 

代码#2:

# 解释 bitwise_xor() 函数的 Python 程序
import numpy as geek
in_arr1 = [2, 8, 125]
in_arr2 = [3, 3, 115]
print ("Input array1 : ", in_arr1) 
print ("Input array2 : ", in_arr2)
out_arr = geek.bitwise_xor(in_arr1, in_arr2) 
print ("Output array after bitwise_xor: ", out_arr) 

在 IDE 上运行

输出 :

Input array1 :  [2, 8, 125]
Input array2 :  [3, 3, 115]
Output array after bitwise_xor:  [ 1 11 14]

numpy.invert(): 此函数用于计算数组元素的按位反转。 它计算输入数组中整数的底层二进制表示的按位 NOT。

对于有符号整数输入,返回二进制补码。在二进制补码系统中,负数由绝对值的二进制补码表示。

代码#1:

# 解释 invert() 函数的 Python 程序
import numpy as geek
in_num = 10
print ("Input  number : ", in_num)
out_num = geek.invert(in_num) 
print ("inversion of 10 : ", out_num) 

在 IDE 上运行

输出 :

Input  number :  10
inversion of 10 :  -11

代码#2:

# 解释 invert() 函数的 Python 程序
import numpy as geek
in_arr = [2, 0, 25]
print ("Input array : ", in_arr)
out_arr = geek.invert(in_arr) 
print ("Output array after inversion: ", out_arr) 

在 IDE 上运行

输出 :

Input array :  [2, 0, 25]
Output array after inversion:  [ -3  -1 -26]

numpy.left_shift(): 此函数用于将整数的位向左移动。通过在 arr1 的右侧附加 arr2 0s(零)来向左移动位。由于数字的内部表示是二进制格式,所以这个操作相当于 arr1 乘以 2**arr2。例如,如果数字是 5,我们想要左移 2 位,那么在左移 2 位之后,结果将是 5*(2^2) = 20

代码#1:

# 解释 left_shift() 函数的 Python 程序
import numpy as geek
in_num = 5
bit_shift = 2
print ("Input  number : ", in_num)
print ("Number of bit shift : ", bit_shift ) 
out_num = geek.left_shift(in_num, bit_shift) 
print ("After left shifting 2 bit  : ", out_num) 

在 IDE 上运行

输出 :

Input  number :  5
Number of bit shift :  2
After left shifting 2 bit  :  20

代码#2:

# 解释 left_shift() 函数的 Python 程序
import numpy as geek
in_arr = [2, 8, 15]
bit_shift =[3, 4, 5]
print ("Input array : ", in_arr) 
print ("Number of bit shift : ", bit_shift)
out_arr = geek.left_shift(in_arr, bit_shift) 
print ("Output array after left shifting: ", out_arr) 

在 IDE 上运行

输出 :

Input array :  [2, 8, 15]
Number of bit shift :  [3, 4, 5]
Output array after left shifting:  [ 16 128 480]

numpy.right_shift(): 该函数用于将整数的位右移。由于数字的内部表示是二进制格式,因此该操作相当于将 arr1 除以 2**arr2。例如,如果数字是 20,我们想要右移 2 位,那么在右移 2 位之后,结果将是 20/(2^2) = 5。

代码#1:

# 解释 right_shift() 函数的 Python 程序
import numpy as geek
in_num = 20
bit_shift = 2
print ("Input  number : ", in_num)
print ("Number of bit shift : ", bit_shift ) 
out_num = geek.right_shift(in_num, bit_shift) 

在 IDE 上运行

输出 :

Input  number :  20
Number of bit shift :  2
After right shifting 2 bit  :  5

代码#2:

# 解释 right_shift() 函数的 Python 程序
import numpy as geek
in_arr = [24, 48, 16]
bit_shift =[3, 4, 2]
print ("Input array : ", in_arr) 
print ("Number of bit shift : ", bit_shift)
out_arr = geek.right_shift(in_arr, bit_shift) 
print ("Output array after right shifting: ", out_arr) 


在 IDE 上运行

输出 :

Input array :  [24, 48, 16]
Number of bit shift :  [3, 4, 2]
Output array after right shifting:  [3 3 4]

numpy.binary_repr(number, width=None): 该函数用于将输入数字的二进制形式表示为字符串。对于负数,如果未给出宽度,则在前面添加一个减号。如果给出了宽度,则返回与该宽度相关的数字的二进制补码。

在二进制补码系统中,负数由绝对值的二进制补码表示。这是在计算机上表示有符号整数的最常用方法。

代码#1:

# 解释 binary_repr() 函数的 Python 程序
import numpy as geek
in_num = 10
print ("Input  number : ", in_num)
out_num = geek.binary_repr(in_num) 
print ("binary representation of 10 : ", out_num) 

在 IDE 上运行

输出 :

Input  number :  10
binary representation of 10 :  1010

代码#2:

# 解释 binary_repr() 函数的 Python 程序
import numpy as geek
in_arr = [5, -8 ]
print ("Input array : ", in_arr) 
# 不使用宽度参数的第一个数组元素的二进制表示
out_num = geek.binary_repr(in_arr[0])
print("Binary representation of 5")
print ("Without using width parameter : ", out_num) 
# 使用宽度参数的第一个数组元素的二进制表示
out_num = geek.binary_repr(in_arr[0], width = 5)
print ("Using width parameter: ", out_num) 
print("\nBinary representation of -8")
# 不使用宽度参数的第二个数组元素的二进制表示
out_num = geek.binary_repr(in_arr[1])
print ("Without using width parameter : ", out_num) 
# 使用宽度参数的第二个数组元素的二进制表示
out_num = geek.binary_repr(in_arr[1], width = 5)
print ("Using width parameter : ", out_num) 


在 IDE 上运行

输出 :

Input array :  [5, -8]
Binary representation of 5 
Without using width parameter :  101
Using width parameter:  00101
Binary representation of -8  
Without using width parameter :  -1000
Using width parameter :  11000

numpy.packbits(myarray, axis=None) : 此函数用于将二进制值数组的元素打包成 uint8 数组中的位。通过在末尾插入零位将结果填充到完整字节。

代码#1:

# 解释 packbits() 函数的 Python 程序
import numpy as np
# 使用数组函数创建数组
a = np.array([[[1,0,1],
             [0,1,0]],
             [[1,1,0],
             [0,0,1]]])
# 使用 packbits() 函数打包数组的元素
b = np.packbits(a, axis=-1)
print(b)

在 IDE 上运行

输出 :

[[[160],[64]],[[192],[32]]]

numpy.unpackbits(myarray, axis=None) : 此函数用于将 uint8 数组的元素解包为二进制值输出数组。 myarray 的每个元素表示应解包为二进制值输出数组的位字段. 输出数组的形状是一维的(如果轴为无)或与输入数组的形状相同,并沿指定的轴进行解包。

代码#1:

# 解释 unpackbits() 函数的 Python 程序
import numpy as np
# 使用数组函数创建数组
a = np.array([[2], [7], [23]], dtype=np.uint8)
# 使用 packbits() 函数打包数组的元素
b = np.unpackbits(a, axis = 1)
print(b)

在 IDE 上运行

输出 :

[[0, 0, 0, 0, 0, 0, 1, 0],
 [0, 0, 0, 0, 0, 1, 1, 1],
 [0, 0, 0, 1, 0, 1, 1, 1]]


目录
相关文章
|
4天前
|
Python
SciPy 教程 之 Scipy 显著性检验 3
本教程介绍Scipy显著性检验,包括其基本概念、原理及应用。显著性检验用于判断样本与总体假设间的差异是否显著,是统计学中的重要工具。Scipy通过`scipy.stats`模块提供了相关功能,支持双边检验等方法。
11 1
|
6天前
|
机器学习/深度学习 Python
SciPy 教程 之 SciPy 插值 2
SciPy插值教程:介绍插值概念及其在数值分析中的应用,特别是在处理数据缺失时的插补和平滑数据集。SciPy的`scipy.interpolate`模块提供了强大的插值功能,如一维插值和样条插值。通过`UnivariateSpline()`函数,可以轻松实现单变量插值,示例代码展示了如何对非线性点进行插值计算。
10 3
|
9天前
|
机器学习/深度学习 数据处理 Python
SciPy 教程 之 SciPy 空间数据 4
本教程介绍了SciPy的空间数据处理功能,主要通过scipy.spatial模块实现。内容涵盖空间数据的基本概念、距离矩阵的定义及其在生物信息学中的应用,以及如何计算欧几里得距离。示例代码展示了如何使用SciPy计算两点间的欧几里得距离。
25 5
|
8天前
|
机器学习/深度学习 Python
SciPy 教程 之 SciPy 空间数据 6
本教程介绍了SciPy处理空间数据的方法,包括使用scipy.spatial模块进行点位置判断、最近点计算等内容。还详细讲解了距离矩阵的概念及其应用,如在生物信息学中表示蛋白质结构等。最后,通过实例演示了如何计算两点间的余弦距离。
17 3
|
7天前
|
机器学习/深度学习 数据处理 Python
SciPy 教程 之 SciPy 空间数据 7
本教程介绍了SciPy的空间数据处理功能,涵盖如何使用`scipy.spatial`模块进行点的位置判断、最近点计算等操作。还详细解释了距离矩阵的概念及其在生物信息学中的应用,以及汉明距离的定义和计算方法。示例代码展示了如何计算两个点之间的汉明距离。
14 1
|
10天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
26 2
|
11天前
|
Python
SciPy 教程 之 SciPy 图结构 7
《SciPy 教程 之 SciPy 图结构 7》介绍了 SciPy 中处理图结构的方法。图是由节点和边组成的集合,用于表示对象及其之间的关系。scipy.sparse.csgraph 模块提供了多种图处理功能,如 `breadth_first_order()` 方法可按广度优先顺序遍历图。示例代码展示了如何使用该方法从给定的邻接矩阵中获取广度优先遍历的顺序。
22 2
|
12天前
|
算法 Python
SciPy 教程 之 SciPy 图结构 5
SciPy 图结构教程,介绍图的基本概念和SciPy中处理图结构的模块scipy.sparse.csgraph。重点讲解贝尔曼-福特算法,用于求解任意两点间最短路径,支持有向图和负权边。通过示例演示如何使用bellman_ford()方法计算最短路径。
23 3
|
12天前
|
缓存 测试技术 Apache
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
28 1
|
5天前
|
机器学习/深度学习 数据处理 Python
SciPy 教程 之 SciPy 插值 3
本教程介绍了SciPy中的插值方法,包括什么是插值及其在数据处理和机器学习中的应用。通过 `scipy.interpolate` 模块,特别是 `Rbf()` 函数,展示了如何实现径向基函数插值,以平滑数据集中的离散点。示例代码演示了如何使用 `Rbf()` 函数进行插值计算。
12 0