Python 教程之 Numpy(5)—— 数据类型对象(dtype)

简介: Python 教程之 Numpy(5)—— 数据类型对象(dtype)

每个 ndarray 都有一个关联的数据类型 (dtype) 对象。这个数据类型对象(dtype)告诉我们数组的布局。这意味着它为我们提供了以下信息:

  • 数据类型(整数、浮点数、Python 对象等)
  • 数据大小(字节数)
  • 数据的字节顺序(小端或大端)
  • 如果数据类型是子数组,它的形状和数据类型是什么?

ndarray 的值存储在缓冲区中,可以将其视为连续的内存字节块。所以这些字节将如何被解释由 dtype 对象给出。  


1.构造数据类型(dtype)对象: 数据类型对象是NumPy.dtype类的一个实例,可以使用NumPy.dtype来创建。

参数:

  • obj: 要转换为数据类型对象的对象。
  • align : bool, optional

      向字段添加填充以匹配 C 编译器为类似 C 结构输出的内容。

  • copy : bool, optional
    创建数据类型对象的新副本。如果为 False,则结果可能只是对内置数据类型对象的引用。
# Python 程序创建数据类型对象
import numpy as np
# np.int16 被转换为数据类型对象。
print(np.dtype(np.int16))

输出:

int16
# Python 程序创建一个包含 32 位大端整数的数据类型对象
import numpy as np
# i4 表示大小为 4 字节的整数
# > 代表大端字节序,< 代表小端编码。
# dt 是一个 dtype 对象
dt = np.dtype('>i4')
print("Byte order is:",dt.byteorder)
print("Size is:",dt.itemsize)
print("Data type is:",dt.name)

输出:

Byte order is: >
Size is: 4
Name of data type is: int32

类型说明符(在上述情况下为i4 )可以采用不同的形式:

b1, i1, i2, i4, i8, u1, u2, u4, u8, f2, f4, f8, c8, c16, a

(表示字节、整数、无符号整数、浮点数、复数和 指定字节长度

的定长字符串)****

  • int8,...,uint8,...,float16, float32, float64, complex64, complex128
    (这次是大小)

笔记:

dtype is different from type.
# 用于区分类型和数据类型的 Python 程序。
import numpy as np
a = np.array([1])
print("type is: ",type(a))
print("dtype is: ",a.dtype)

输出:

type is:    
dtype is:  int32

2. 具有结构化数组的数据类型对象: 数据类型对象对于创建结构化数组很有用。结构化数组是包含不同类型数据的数组。可以借助字段访问结构化数组。

字段就像为对象指定名称。在结构化数组的情况下,dtype 对象也将是结构化的。

# 用于演示字段使用的 Python 程序
import numpy as np
# 一种结构化数据类型,包含一个 16 字符的字符串(在“name”字段中)和两个 64 位浮点数的子数组(在“grades”字段中):
dt = np.dtype([('name', np.unicode_, 16), ('grades', np.float64, (2,))])
# 具有字段等级的对象的数据类型
print(dt['grades'])
# 具有字段名称的对象的数据类型
print(dt['name'])

输出: 

('<f8', (2,))
# Python 程序演示了数据类型对象与结构化数组的使用。
import numpy as np
dt = np.dtype([('name', np.unicode_, 16), ('grades', np.float64, (2,))])
# x 是一个包含学生姓名和分数的结构化数组。
# 学生姓名的数据类型是np.unicode_,分数的数据类型是np.float(64)
x = np.array([('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))], dtype=dt)
print(x[1])
print("Grades of John are: ",x[1]['grades'])
print("Names are: ",x['name'])

输出:

('John', [ 6.,  7.])
Grades of John are:  [ 6.  7.]
Names are:  ['Sarah' 'John']

感谢大家的阅读,有什么问题的话可以在评论中告诉我。希望大家能够给我来个点赞+收藏+评论 ,你的支持是海海更新的动力!后面我会持续分享前端 & 后端相关的专业知识。



目录
相关文章
|
2天前
|
存储 Python
SciPy 教程 之 SciPy 稀疏矩阵 4
SciPy 教程之 SciPy 稀疏矩阵 4:介绍稀疏矩阵的概念、类型及其在科学计算中的应用。SciPy 的 `scipy.sparse` 模块提供了处理稀疏矩阵的工具,重点讲解了 CSC 和 CSR 两种格式,并通过示例演示了如何创建和操作 CSR 矩阵。
20 3
|
3天前
|
存储 Python
SciPy 教程 之 SciPy 稀疏矩阵 2
SciPy教程之SciPy稀疏矩阵2:介绍稀疏矩阵的概念、应用场景及scipy.sparse模块的使用。重点讲解CSC和CSR两种稀疏矩阵类型及其常用方法,如data属性和count_nonzero()方法。
23 4
|
1天前
|
算法 Python
SciPy 教程 之 SciPy 图结构 1
SciPy 图结构教程介绍了图的基本概念及其在算法中的应用。图由节点和边组成,节点代表对象,边表示对象间的连接。SciPy 的 `scipy.sparse.csgraph` 模块提供了处理图结构的工具。邻接矩阵用于表示节点间的连接关系,分为有向图和无向图两种类型。无向图的边是双向的,而有向图的边则有明确的方向。
8 0
|
1天前
|
存储 Python
SciPy 教程 之 SciPy 稀疏矩阵 5
SciPy 稀疏矩阵教程介绍了稀疏矩阵的概念及其在科学计算中的应用。SciPy 的 `scipy.sparse` 模块提供了处理稀疏矩阵的功能,主要使用 CSC(压缩稀疏列)和 CSR(压缩稀疏行)两种格式。通过示例展示了如何创建 CSR 矩阵、查看非零元素及转换为 CSC 格式。
10 0
|
2月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
60 0
|
3月前
|
机器学习/深度学习 数据处理 计算机视觉
NumPy实践宝典:Python高手教你如何轻松玩转数据处理!
【8月更文挑战第22天】NumPy是Python科学计算的核心库,专长于大型数组与矩阵运算,并提供了丰富的数学函数。首先需安装NumPy (`pip install numpy`)。之后可通过创建数组、索引与切片、执行数学与逻辑运算、变换数组形状及类型、计算统计量和进行矩阵运算等操作来实践学习。NumPy的应用范围广泛,从基础的数据处理到图像处理都能胜任,是数据科学领域的必备工具。
52 0
|
4天前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
13 3
|
4天前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
13 2
|
2月前
|
机器学习/深度学习 算法 数据可视化
8种数值变量的特征工程技术:利用Sklearn、Numpy和Python将数值转化为预测模型的有效特征
特征工程是机器学习流程中的关键步骤,通过将原始数据转换为更具意义的特征,增强模型对数据关系的理解能力。本文重点介绍处理数值变量的高级特征工程技术,包括归一化、多项式特征、FunctionTransformer、KBinsDiscretizer、对数变换、PowerTransformer、QuantileTransformer和PCA,旨在提升模型性能。这些技术能够揭示数据中的潜在模式、优化变量表示,并应对数据分布和内在特性带来的挑战,从而提高模型的稳健性和泛化能力。每种技术都有其独特优势,适用于不同类型的数据和问题。通过实验和验证选择最适合的变换方法至关重要。
43 5
8种数值变量的特征工程技术:利用Sklearn、Numpy和Python将数值转化为预测模型的有效特征
|
1月前
|
机器学习/深度学习 并行计算 大数据
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧2
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
63 10