Pandas中选择和过滤数据的终极指南

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,1000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 本文将介绍使用pandas进行数据选择和过滤的基本技术和函数。无论是需要提取特定的行或列,还是需要应用条件过滤,pandas都可以满足需求。

Python pandas库提供了几种选择和过滤数据的方法,如loc、iloc、[]括号操作符、query、isin、between等等

选择列

loc[]:根据标签选择行和列。df.row_label loc, column_label]

也可以使用loc进行切片操作:

df.loc['row1_label':'row2_label' , 'column1_label':'column2_label']

例如

 # Using loc for label-based selection
 df.loc[:, 'Customer Country':'Customer State']

 # Using loc for label-based selection
 df.loc[[0,1,2], 'Customer Country':'Customer State']

iloc[]:根据位置索引选择行和列。df.iloc [row_position column_position]

可以使用iloc进行切片操作:

 df.iloc['row1_position':'row2_position','col1_position':'col2_position']

例如:

 # Using iloc for index-based selection
 df.iloc[[0,1,2,3] , [3,4,5,6,7,8]]

 # or
 df.iloc[[0,1,2,3] , 3:9]

 # Using iloc for index-based selection
 df.iloc[:, 3:8]

[]括号操作符:它允许选择一个或多个列。df[['column_label']]或df[['column1', 'column2']]]

 # Selecting a single column
 df[['Customer Country']]

 # Selecting multiple columns
 df[['Customer Country', 'Customer State']]

过滤行

loc[]:按标签过滤行。df.loc(条件)

 # Using loc for filtering rows
 condition = df['Order Quantity'] > 3
 df.loc[condition]

 # or
 df.loc[df['Order Quantity'] > 3]

 # Using loc for filtering rows
 df.loc[df['Customer Country'] == 'United States']

iloc():按位置索引筛选行。

 # Using iloc for filtering rows
 df.iloc[[0, 2, 4]]

 # Using iloc for filtering rows
 df.iloc[:3, :2]

[]括号操作符:它允许根据条件过滤行。df(条件)

 # Using [] bracket operator for filtering rows# Using [] bracket operator for filtering rows
 condition = df['Order Quantity'] > 3
 df[condition]

 # or
 df[df['Order Quantity'] > 3]

isin([]):基于列表过滤数据。df (df (column_name”).isin ([value1, ' value2 ']))

 # Using isin for filtering rows
 df[df['Customer Country'].isin(['United States', 'Puerto Rico'])]

 # Filter rows based on values in a list and select spesific columns
 df[["Customer Id", "Order Region"]][df['Order Region'].isin(['Central America', 'Caribbean'])]

 # Using NOT isin for filtering rows
 df[~df['Customer Country'].isin(['United States'])]

query():方法用于根据类似sql的条件表达式选择数据。df.query(条件)

如果列名包含空格或特殊字符,首先应该使用rename()函数来重命名它们。

 # Rename the columns before performing the query
 df.rename(columns={'Order Quantity' : 'Order_Quantity', "Customer Fname" : "Customer_Fname"}, inplace=True)

 # Using query for filtering rows with a single condition
 df.query('Order_Quantity > 3')

 # Using query for filtering rows with multiple conditions
 df.query('Order_Quantity > 3 and Customer_Fname == "Mary"')

between():根据在指定范围内的值筛选行。df[df['column_name'].between(start, end)]

 # Filter rows based on values within a range
 df[df['Order Quantity'].between(3, 5)]

字符串方法:根据字符串匹配条件筛选行。例如str.startswith(), str.endswith(), str.contains()

 # Using str.startswith() for filtering rows
 df[df['Category Name'].str.startswith('Cardio')]

 # Using str.contains() for filtering rows
 df[df['Customer Segment'].str.contains('Office')]

更新值

loc[]:可以为DataFrame中的特定行和列并分配新值。

 # Update values in a column based on a condition
 df.loc[df['Customer Country'] == 'United States', 'Customer Country'] = 'USA'

iloc[]:也可以为DataFrame中的特定行和列并分配新值,但是他的条件是数字索引

 # Update values in a column based on a condition
 df.iloc[df['Order Quantity'] > 3, 15] = 'greater than 3'

 #
 condition = df['Order Quantity'] > 3
 df.iloc[condition, 15] = 'greater than 3'

replace():用新值替换DataFrame中的特定值。df.['column_name'].replace(old_value, new_value, inplace=True)

 # Replace specific values in a column
 df['Order Quantity'].replace(5, 'equals 5', inplace=True)

总结

Python pandas提供了很多的函数和技术来选择和过滤DataFrame中的数据。比如我们常用的 loc和iloc,有很多人还不清楚这两个的区别,其实它们很简单,在Pandas中前面带i的都是使用索引数值来访问的,例如 loc和iloc,at和iat,它们访问的效率是类似的,只不过是方法不一样,我们这里在使用loc和iloc为例做一个简单的说明:

loc:根据标签(label)索引,什么是标签呢?

行标签就是我们所说的索引(index),列标签就是列名(columns)

iloc,根据标签的位置索引。

iloc就是 integer loc的缩写。也就是说我们不知道列名的时候可以直接访问的第几行,第几列

这样解释应该可以很好理解这两个的区别了。最后如果你看以前(很久以前)的代码可能还会看到ix,它是先于iloc、和loc的。但是现在基本上用iloc和loc已经完全能取代ix,所以ix已经被官方弃用了。如果有看到的话说明这个代码已经很好了,并且完全可以使用iloc替代。

https://avoid.overfit.cn/post/e6d1ed36012a4f4fa62c3bc20ff44056

最后,通过灵活本文介绍的这些方法,可以更高效地处理和分析数据集,从而更好地理解和挖掘数据的潜在信息。希望这个指南能够帮助你在数据科学的旅程中取得更大的成功!

目录
相关文章
|
4月前
|
数据采集 安全 数据挖掘
Pandas数据合并:10种高效连接技巧与常见问题
在数据分析中,数据合并是常见且关键的步骤。本文针对合并来自多个来源的数据集时可能遇到的问题,如列丢失、重复记录等,提供系统解决方案。基于对超1000个复杂数据集的分析经验,总结了10种关键技术,涵盖Pandas库中`merge`和`join`函数的使用方法。内容包括基本合并、左连接、右连接、外连接、基于索引连接、多键合并、数据拼接、交叉连接、后缀管理和合并验证等场景。通过实际案例与技术原理解析,帮助用户高效准确地完成数据整合任务,提升数据分析效率。
377 13
Pandas数据合并:10种高效连接技巧与常见问题
|
8月前
|
存储 人工智能 自然语言处理
Pandas数据应用:自然语言处理
本文介绍Pandas在自然语言处理(NLP)中的应用,涵盖数据准备、文本预处理、分词、去除停用词等常见任务,并通过代码示例详细解释。同时,针对常见的报错如`MemoryError`、`ValueError`和`KeyError`提供了解决方案。适合初学者逐步掌握Pandas与NLP结合的技巧。
213 20
|
8月前
|
存储 数据挖掘 计算机视觉
Pandas数据应用:图像处理
Pandas 是一个强大的 Python 数据分析库,主要用于处理结构化数据。尽管它不是专门为图像处理设计的,但可以利用其功能辅助图像处理任务。本文介绍如何使用 Pandas 进行图像处理,包括图像读取、显示、基本操作及常见问题解决方法。通过代码案例解释如何将图像转换为 DataFrame 格式,并探讨数据类型不匹配、内存溢出和颜色通道混淆等问题的解决方案。总结中指出,虽然 Pandas 可作为辅助工具,但在实际项目中建议结合专门的图像处理库如 OpenCV 等使用。
185 18
|
7月前
|
监控 物联网 数据处理
Pandas高级数据处理:数据流式计算
本文介绍了如何使用 Pandas 进行流式数据处理。流式计算能够实时处理不断流入的数据,适用于金融交易、物联网监控等场景。Pandas 虽然主要用于批处理,但通过分块读取文件、增量更新 DataFrame 和使用生成器等方式,也能实现简单的流式计算。文章还详细讨论了内存溢出、数据类型不一致、数据丢失或重复及性能瓶颈等常见问题的解决方案,并建议在处理大规模数据时使用专门的流式计算框架。
447 100
Pandas高级数据处理:数据流式计算
|
8月前
|
机器学习/深度学习 存储 算法
Pandas数据应用:客户流失预测
本文介绍如何使用Pandas进行客户流失预测,涵盖数据加载、预处理、特征工程和模型训练。通过解决常见问题(如文件路径错误、编码问题、列名不一致等),确保数据分析顺利进行。特征工程中创建新特征并转换数据类型,为模型训练做准备。最后,划分训练集与测试集,选择合适的机器学习算法构建模型,并讨论数据不平衡等问题的解决方案。掌握这些技巧有助于有效应对实际工作中的复杂情况。
224 95
|
8月前
|
机器学习/深度学习 数据采集 JSON
Pandas数据应用:机器学习预处理
本文介绍如何使用Pandas进行机器学习数据预处理,涵盖数据加载、缺失值处理、类型转换、标准化与归一化及分类变量编码等内容。常见问题包括文件路径错误、编码不正确、数据类型不符、缺失值处理不当等。通过代码案例详细解释每一步骤,并提供解决方案,确保数据质量,提升模型性能。
318 88
|
8月前
|
数据采集 存储 供应链
Pandas数据应用:库存管理
本文介绍Pandas在库存管理中的应用,涵盖数据读取、清洗、查询及常见报错的解决方法。通过具体代码示例,讲解如何处理多样数据来源、格式不一致、缺失值和重复数据等问题,并解决KeyError、ValueError等常见错误,帮助提高库存管理效率和准确性。
243 72
|
7月前
|
数据采集 数据可视化 数据处理
Pandas高级数据处理:数据仪表板制作
《Pandas高级数据处理:数据仪表板制作》涵盖数据清洗、聚合、时间序列处理等技巧,解决常见错误如KeyError和内存溢出。通过多源数据整合、动态数据透视及可视化准备,结合性能优化与最佳实践,助你构建响应快速、数据精准的商业级数据仪表板。适合希望提升数据分析能力的开发者。
157 31
|
7月前
|
缓存 数据可视化 BI
Pandas高级数据处理:数据仪表板制作
在数据分析中,面对庞大、多维度的数据集(如销售记录、用户行为日志),直接查看原始数据难以快速抓住重点。传统展示方式(如Excel表格)缺乏交互性和动态性,影响决策效率。为此,我们利用Python的Pandas库构建数据仪表板,具备数据聚合筛选、可视化图表生成和性能优化功能,帮助业务人员直观分析不同品类商品销量分布、省份销售额排名及日均订单量变化趋势,提升数据洞察力与决策效率。
118 12
|
7月前
|
消息中间件 数据挖掘 数据处理
Pandas高级数据处理:数据流式计算
在大数据时代,Pandas作为Python强大的数据分析库,在处理结构化数据方面表现出色。然而,面对海量数据时,如何实现高效的流式计算成为关键。本文探讨了Pandas在流式计算中的常见问题与挑战,如内存限制、性能瓶颈和数据一致性,并提供了详细的解决方案,包括使用`chunksize`分批读取、向量化操作及`dask`库等方法,帮助读者更好地应对大规模数据处理需求。
151 17