了解七大经典排序算法,看这一篇就足够了!!!(下)

简介: 了解七大经典排序算法,看这一篇就足够了!!!(下)

2.4 堆排序


2.4.1 堆排序基本思想


堆排序 (Heapsort) 是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。

444.png


2.4.2 堆排序实现代码


   public static void heapSort(int[] array){
        crearMaxheap(array);
        int end=array.length-1;
        while(end>0){
            swap(array,0,end);
            siftDown(array,0,end);
            end--;
        }
    }
    private static void crearMaxheap(int[] array){
        for (int parent = (array.length-1-1)/2; parent >=0 ; parent--) {
            siftDown(array,parent,array.length);
        }
    }
    private static void siftDown(int[] array,int parent,int len){
        int child=2*parent+1;
        while(child<len){
            if(child+1<len && array[child+1]>array[child]){
                child=child+1;
            }
            //孩子最大值以及找到
            if(array[child]>array[parent]){
                swap(array,child,parent);
                parent=child;
                child=2*parent+1;
            }else{
                break;
            }
        }
    }


2.4.3 堆排序特性总结


  • 堆排序使用堆来选数,效率就高了很多。
  • 时间复杂度:O(N*logN)
  • 空间复杂度:O(1)
  • 稳定性:不稳定


2.5 冒泡排序


2.5.1 冒泡排序基本思想


就是根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置,交换排序的特

点是:将键值较大的记录向序列的尾部移动,键值较小的记录向序列的前部移动。

212.gif


2.5.2 冒泡排序实现代码


    public static void bubbleSort(int[] array){
        for (int i = 0; i < array.length-1; i++) {
            boolean flg=false;
            for (int j = 0; j < array.length-1-i; j++) {
                if(array[j]>array[j+1]){
                    swap(array,j,j+1);
                    flg=true;
                }
            }
            if(flg==false){
                break;
            }
        }
    }


2.5.3 冒泡排序特性总结


  • 冒泡排序是一种非常容易理解的排序
  • 时间复杂度:O(N^2)
  • 空间复杂度:O(1)
  • 稳定性:稳定


2.6 快速排序


2.6.1 快速排序基本思想


任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。


213.gif


2.6.2 快速排序实现代码


    public static void quickSort(int[] array){
        int start=0;
        int end= array.length-1;
        quick(array,start,end);
    }
    private static void quick(int[] array,int start,int end){
        if(start>=end){
            return;
        }
        int pivot=paratition(array,start,end);
        quick(array,start,pivot-1);
        quick(array,pivot+1,end);
    }
    //选轴值
    private static int paratitionHoare(int[] array,int left,int right){
        int i=left;
        int tmp=array[left];
        while (left<right){
            while (left<right && array[right]>=tmp){
                right--;
            }
            while (left<right && array[left]<=tmp){
                left++;
            }
            swap(array,left,right);
        }
        swap(array,i,left);
        return left;
    }
    //选基准的两种方法
    //挖坑法
    private static int paratition(int[] array,int left,int right){
        int tmp=array[left];
        while(left<right){
            while (left<right && array[right]>=tmp){
                right--;
            }
            array[left]=array[right];
            while (left<right && array[left]<=tmp){
                left++;
            }
            array[right]=array[left];
        }
        //相遇之后,把tmp放到坑里
        array[left]=tmp;
        return left;
    }


2.6.3 快速排序非递归实现


    private static void quickNor(int[] array,int start,int end){
        if(start>=end){
            return;
        }
        Stack<Integer> stack=new Stack<>();
        int pivot=paratitionHoare(array,start,end);
        if(pivot-1>start){
            //说明左边有2个以上的元素
            stack.push(start);
            stack.push(pivot-1);
        }
        if(pivot+1<end){
            //说明右边有2个以上的元素
            stack.push(pivot+1);
            stack.push(end);
        }
        while (!stack.isEmpty()){
            end=stack.pop();
            start=stack.pop();
            pivot=paratitionHoare(array,start,end);
            if(pivot-1>start){
                //说明左边有2个以上的元素
                stack.push(start);
                stack.push(pivot-1);
            }
            if(pivot+1<end){
                //说明右边有2个以上的元素
                stack.push(pivot+1);
                stack.push(end);
            }
        }


2.6.4 快速排序特性总结


  • 快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫快速排序
  • 时间复杂度:O(N*logN)
  • 空间复杂度:O(logN)
  • 稳定性:不稳定

345.png


2.7 归并排序


2.7.1 归并排序基本思想


归并排序( MERGE-SORT )是建立在归并操作上的一种有效的排序算法 , 该算法是采用分治法( Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。 归并排序核心步骤:

555.png


2.7.2 归并排序实现代码


public static void mergeSort(int[] array){
        mergeSortFun(array,0,array.length-1);
    }
    private static void mergeSortFun(int[] array,int start,int end){
        if(start>=end){
            return;
        }
        int mid=(start+end)/2;
        mergeSortFun(array,start,mid);
        mergeSortFun(array,mid+1,end);
        //开始合并
        merge(array,start,mid,end);
    }
    private static void merge(int[] array,int left,int mid,int right){
        int s1=left;
        int e1=mid;
        int s2=mid+1;
        int e2=right;
        int k=0;
        int[] tmpArr=new int[right-left+1];
        while (s1<=e1 && s2<=e2){
            if(array[s1]<=array[s2]){
                tmpArr[k++]=array[s1++];
            }else {
                tmpArr[k++]=array[s2++];
            }
        }
        while (s1<=e1){
            tmpArr[k++]=array[s1++];
        }
        while (s2<=e2){
            tmpArr[k++]=array[s2++];
        }
        for (int i = 0; i < tmpArr.length; i++) {
            array[i+left]=tmpArr[i];
        }
    }


2.7.3 归并排序非递归实现


    public static void mergeSortNor(int[] array){
        int gap=1;
        while (gap<array.length){
            for (int i = 0; i < array.length; i+=gap*2) {
                int left=i;
                int mid=left+gap-1;
                int right=mid+gap;
                //mid和right可能会越界
                if(mid>=array.length){
                    mid=array.length-1;
                }
                if(right>=array.length){
                    right=array.length-1;
                }
                merge(array,left,mid,right);
            }
            gap*=2;
        }
    }


2.7.4 归并排序特性总结


  • 归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。
  • 时间复杂度:O(N*logN)
  • 空间复杂度:O(N)
  • 稳定性:稳定


三、排序算法复杂度及稳定性一览表



排序方法 最好 平均 最坏 空间复杂度 稳定性
冒泡排序 O(n)

O(n^2)

O(n^2) O(1) 稳定
插入排序 O(n)

O(n^2)

O(n^2)

O(1) 稳定
希尔排序 O(n) O(n^1.3) O(n^2) O(1) 不稳定
堆排序 O(n*logn) O(n*logn) O(n*logn) O(1) 不稳定
选择排序 O(n^2) O(n^2) O(n^2) O(1) 不稳定

快速排序O(n*logn)O(n*logn)

O(n^2)

O(log(n)) ~ O(n)

不稳定归并排序O(n*logn)O(n*logn)O(n*logn)O(n)稳定


目录
相关文章
|
搜索推荐
了解七大经典排序算法,看这一篇就足够了!!!(上)
了解七大经典排序算法,看这一篇就足够了!!!(上)
71 2
|
算法
算法有序数组合并---在空间足够的情况下,进行O(n)的合并 并且移动次数最小
最近看一本书上有一个面试题,  原题目是 有两个递增数组 A1 A2,   A1的内存空间足够长, 现在要求合并 A2到A1,并且要求移动次数最小 ,面试的时候 我们尽量要以  最高效的方式完成 ,下面是此题  O(n)解法。
920 0
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。

热门文章

最新文章