了解七大经典排序算法,看这一篇就足够了!!!(下)

简介: 了解七大经典排序算法,看这一篇就足够了!!!(下)

2.4 堆排序


2.4.1 堆排序基本思想


堆排序 (Heapsort) 是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。

444.png


2.4.2 堆排序实现代码


   public static void heapSort(int[] array){
        crearMaxheap(array);
        int end=array.length-1;
        while(end>0){
            swap(array,0,end);
            siftDown(array,0,end);
            end--;
        }
    }
    private static void crearMaxheap(int[] array){
        for (int parent = (array.length-1-1)/2; parent >=0 ; parent--) {
            siftDown(array,parent,array.length);
        }
    }
    private static void siftDown(int[] array,int parent,int len){
        int child=2*parent+1;
        while(child<len){
            if(child+1<len && array[child+1]>array[child]){
                child=child+1;
            }
            //孩子最大值以及找到
            if(array[child]>array[parent]){
                swap(array,child,parent);
                parent=child;
                child=2*parent+1;
            }else{
                break;
            }
        }
    }


2.4.3 堆排序特性总结


  • 堆排序使用堆来选数,效率就高了很多。
  • 时间复杂度:O(N*logN)
  • 空间复杂度:O(1)
  • 稳定性:不稳定


2.5 冒泡排序


2.5.1 冒泡排序基本思想


就是根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置,交换排序的特

点是:将键值较大的记录向序列的尾部移动,键值较小的记录向序列的前部移动。

212.gif


2.5.2 冒泡排序实现代码


    public static void bubbleSort(int[] array){
        for (int i = 0; i < array.length-1; i++) {
            boolean flg=false;
            for (int j = 0; j < array.length-1-i; j++) {
                if(array[j]>array[j+1]){
                    swap(array,j,j+1);
                    flg=true;
                }
            }
            if(flg==false){
                break;
            }
        }
    }


2.5.3 冒泡排序特性总结


  • 冒泡排序是一种非常容易理解的排序
  • 时间复杂度:O(N^2)
  • 空间复杂度:O(1)
  • 稳定性:稳定


2.6 快速排序


2.6.1 快速排序基本思想


任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。


213.gif


2.6.2 快速排序实现代码


    public static void quickSort(int[] array){
        int start=0;
        int end= array.length-1;
        quick(array,start,end);
    }
    private static void quick(int[] array,int start,int end){
        if(start>=end){
            return;
        }
        int pivot=paratition(array,start,end);
        quick(array,start,pivot-1);
        quick(array,pivot+1,end);
    }
    //选轴值
    private static int paratitionHoare(int[] array,int left,int right){
        int i=left;
        int tmp=array[left];
        while (left<right){
            while (left<right && array[right]>=tmp){
                right--;
            }
            while (left<right && array[left]<=tmp){
                left++;
            }
            swap(array,left,right);
        }
        swap(array,i,left);
        return left;
    }
    //选基准的两种方法
    //挖坑法
    private static int paratition(int[] array,int left,int right){
        int tmp=array[left];
        while(left<right){
            while (left<right && array[right]>=tmp){
                right--;
            }
            array[left]=array[right];
            while (left<right && array[left]<=tmp){
                left++;
            }
            array[right]=array[left];
        }
        //相遇之后,把tmp放到坑里
        array[left]=tmp;
        return left;
    }


2.6.3 快速排序非递归实现


    private static void quickNor(int[] array,int start,int end){
        if(start>=end){
            return;
        }
        Stack<Integer> stack=new Stack<>();
        int pivot=paratitionHoare(array,start,end);
        if(pivot-1>start){
            //说明左边有2个以上的元素
            stack.push(start);
            stack.push(pivot-1);
        }
        if(pivot+1<end){
            //说明右边有2个以上的元素
            stack.push(pivot+1);
            stack.push(end);
        }
        while (!stack.isEmpty()){
            end=stack.pop();
            start=stack.pop();
            pivot=paratitionHoare(array,start,end);
            if(pivot-1>start){
                //说明左边有2个以上的元素
                stack.push(start);
                stack.push(pivot-1);
            }
            if(pivot+1<end){
                //说明右边有2个以上的元素
                stack.push(pivot+1);
                stack.push(end);
            }
        }


2.6.4 快速排序特性总结


  • 快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫快速排序
  • 时间复杂度:O(N*logN)
  • 空间复杂度:O(logN)
  • 稳定性:不稳定

345.png


2.7 归并排序


2.7.1 归并排序基本思想


归并排序( MERGE-SORT )是建立在归并操作上的一种有效的排序算法 , 该算法是采用分治法( Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。 归并排序核心步骤:

555.png


2.7.2 归并排序实现代码


public static void mergeSort(int[] array){
        mergeSortFun(array,0,array.length-1);
    }
    private static void mergeSortFun(int[] array,int start,int end){
        if(start>=end){
            return;
        }
        int mid=(start+end)/2;
        mergeSortFun(array,start,mid);
        mergeSortFun(array,mid+1,end);
        //开始合并
        merge(array,start,mid,end);
    }
    private static void merge(int[] array,int left,int mid,int right){
        int s1=left;
        int e1=mid;
        int s2=mid+1;
        int e2=right;
        int k=0;
        int[] tmpArr=new int[right-left+1];
        while (s1<=e1 && s2<=e2){
            if(array[s1]<=array[s2]){
                tmpArr[k++]=array[s1++];
            }else {
                tmpArr[k++]=array[s2++];
            }
        }
        while (s1<=e1){
            tmpArr[k++]=array[s1++];
        }
        while (s2<=e2){
            tmpArr[k++]=array[s2++];
        }
        for (int i = 0; i < tmpArr.length; i++) {
            array[i+left]=tmpArr[i];
        }
    }


2.7.3 归并排序非递归实现


    public static void mergeSortNor(int[] array){
        int gap=1;
        while (gap<array.length){
            for (int i = 0; i < array.length; i+=gap*2) {
                int left=i;
                int mid=left+gap-1;
                int right=mid+gap;
                //mid和right可能会越界
                if(mid>=array.length){
                    mid=array.length-1;
                }
                if(right>=array.length){
                    right=array.length-1;
                }
                merge(array,left,mid,right);
            }
            gap*=2;
        }
    }


2.7.4 归并排序特性总结


  • 归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。
  • 时间复杂度:O(N*logN)
  • 空间复杂度:O(N)
  • 稳定性:稳定


三、排序算法复杂度及稳定性一览表



排序方法 最好 平均 最坏 空间复杂度 稳定性
冒泡排序 O(n)

O(n^2)

O(n^2) O(1) 稳定
插入排序 O(n)

O(n^2)

O(n^2)

O(1) 稳定
希尔排序 O(n) O(n^1.3) O(n^2) O(1) 不稳定
堆排序 O(n*logn) O(n*logn) O(n*logn) O(1) 不稳定
选择排序 O(n^2) O(n^2) O(n^2) O(1) 不稳定

快速排序O(n*logn)O(n*logn)

O(n^2)

O(log(n)) ~ O(n)

不稳定归并排序O(n*logn)O(n*logn)O(n*logn)O(n)稳定


目录
相关文章
|
11月前
|
搜索推荐
了解七大经典排序算法,看这一篇就足够了!!!(上)
了解七大经典排序算法,看这一篇就足够了!!!(上)
55 2
|
算法
算法有序数组合并---在空间足够的情况下,进行O(n)的合并 并且移动次数最小
最近看一本书上有一个面试题,  原题目是 有两个递增数组 A1 A2,   A1的内存空间足够长, 现在要求合并 A2到A1,并且要求移动次数最小 ,面试的时候 我们尽量要以  最高效的方式完成 ,下面是此题  O(n)解法。
905 0
|
22天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
7天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
8天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
9天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
8天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
8天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
25 3
|
19天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
20天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。