软件测试/人工智能|探究 LangChain 核心模块:PromptsModelsParsers

简介: 软件测试/人工智能|探究 LangChain 核心模块:PromptsModelsParsers

image.png

简介

LangChain 是一种新兴的语言处理平台,其核心模块之一即 PromptsModelsParsers。这一模块扮演着关键的角色,为 LangChain 的功能和性能提供了坚实的基础。在这篇文章中,我们将深入探讨 PromptsModelsParsers 模块的工作原理、功能和其对语言处理的重要性。

什么是 PromptsModelsParsers?

在 LangChain 中,PromptsModelsParsers 模块被设计成一个整合了多种功能的模块,它涵盖了语言提示(prompts)、模型(models)和解析器(parsers)。这个模块集合了自然语言处理中的关键要素,以便有效地解析用户输入并产生准确的输出。如下图所示:

image.png

  • Prompts:负责请求数据的准备步骤。
  • Model:负责具体请求和参数。
  • Parser:负责请求结果返回后的处理步骤。

三者共同作用,完整的覆盖了整个大模型请求。

工作原理

  1. 语言提示(Prompts):

PromptsModelsParsers 模块通过使用预先定义的语言提示(例如,问题模板或任务指令)来引导用户输入。这些提示是为了激活特定类型的语言处理任务,使得模型能够更好地理解用户意图。

  1. 模型(Models):

该模块整合了多种语言模型,这些模型经过训练,能够处理各种语言任务,如文本生成、语义理解、情感分析等。PromptsModelsParsers 利用这些模型来处理用户输入,并生成相应的输出。

  1. 解析器(Parsers):

解析器是模块中的关键组成部分,它负责解析和理解用户输入。这包括对输入进行结构化分析,提取关键信息并将其传递给适当的模型进行处理。解析器的优化可以大幅提高系统的准确性和效率。

功能与应用

PromptsModelsParsers 模块的功能涵盖了广泛的应用领域:

  • 自然语言理解(NLU):模块能够理解用户提出的问题、命令或需求,并进行语义分析,使系统能够准确地回应用户。
  • 智能交互:LangChain 借助这一模块实现了智能对话功能,使得系统能够更加自然地与用户交流。
  • 任务处理:通过语言提示的引导和模型的支持,模块可以帮助处理各种任务,如日程安排、搜索、语言翻译等。

使用示例

下面是我们的应用例子:

# LangChain相关模块的导入
from langchain.output_parsers import ResponseSchema, StructuredOutputParser
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
key = 'open_ai_key'
# 创建OpenAI调用实例
# temperature用来设置大模型返回数据的随机性和创造性,较低的数值返回的数据就更贴近现实。
chat = ChatOpenAI(temperature=0.0, openai_api_key=key)
# 可复用的模板字符串,注意不要使用 f字符串 ,LangChain会在运行时自动替换
template_str = """\
  text: {text}
  {format_instructions}
"""
# 针对prompt中的每个想要提取的属性,创建ResponseSchema记录字段名称和描述,用于后续解析返回数据
time_schema = ResponseSchema(name="时间", description="事件发生的准确时间")
location_schema = ResponseSchema(name="地点", description="事情发生时,讲述人所处的城市名称")
event_schema = ResponseSchema(name="事件", description="文中主要讲述的具体事件是发生了什么事件")
situation_schema = ResponseSchema(
    name="现象",
    description="列举出事件发生时,出现的每个现象,每个现象作为列表中的单独一项"
)
# 将全部的属性描述schema组装成列表,生成相应值结构化解析器
response_schemas = [time_schema, location_schema, event_schema, situation_schema]
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)
# 根据schema格式定义,自动生成一个支持格式化输出的prompt
format_instructions = output_parser.get_format_instructions()

# 根据模板和数据,生成完整成prompt请求数据
prompt_template = ChatPromptTemplate.from_template(template_str)
custom_message = prompt_template.format_messages(
    text="2023年11月11日下午16:29分,我在北京坐在沙发上看比赛,S13全球总决赛半决赛第一天,TheShy的兰博在天崩开局之下,成功反杀对面,我瞬间感觉我也被兰博烤红了,TheShy就是神!",
    format_instructions=format_instructions
)
# 调用大模型发起请求
customer_res = chat(custom_message)
# 根据结构化解析器,解析返回数据,获取类型正确的数据结果
result = output_parser.parse(customer_res.content)
print(result)
print(type(result))

--------
返回结果如下:
{
   
   '时间':'2023年11月11日下午16:29分', '地点':'北京', '事件':'S13全球总决赛半决赛', '现象':['TheShy兰博天崩开局', '成功反杀对面', '我也被烤红了', 'TheShy就是神']}

未来展望

LangChainPromptsModelsParsers 模块是语言处理技术不断发展的一部分。随着深度学习和自然语言处理领域的进步,预计这一模块将会不断演进和优化,为用户提供更加智能、高效的语言处理体验。

总结

本文主要介绍了LangChainPromptsModelsParsers 模块,介绍了它的原理以及功能运用,并且举例说明了它们的工作步骤,总的来说,PromptsModelsParsers 模块是 LangChain 中不可或缺的一环,它的高效运作为整个平台的功能提供了坚实的基础,为用户带来了更加智能和便捷的语言处理体验。

f8266af847e341d4cffb17cffe6bb25.png

相关实践学习
使用CLup和iSCSI共享盘快速体验PolarDB for PostgtreSQL
在Clup云管控平台中快速体验创建与管理在iSCSI共享盘上的PolarDB for PostgtreSQL。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
24天前
|
机器学习/深度学习 人工智能 分布式计算
人工智能,应该如何测试?(六)推荐系统拆解
该文介绍了推荐系统的基本概念和实现思路。推荐系统通过预处理筛选候选集合,然后利用二分类模型预测用户对内容的喜好概率,再按概率排序选择Top N内容推荐给用户。文中提供了一个使用Spark ML库的简单模型训练DEMO,涉及数据预处理、特征工程和逻辑回归模型。此外,还提及了词向量在处理文本特征中的重要性,它能捕捉词与词之间的关联性。推荐系统的实际应用远比示例复杂,但这个例子有助于理解其核心流程。
21 0
|
2月前
|
安全 测试技术
BOSHIDA DC电源模块的安全性能评估与测试方法
BOSHIDA DC电源模块的安全性能评估与测试方法
 BOSHIDA DC电源模块的安全性能评估与测试方法
|
2月前
|
安全
DC电源模块的安全性能评估与测试方法
DC电源模块的安全性能评估与测试方法 DC电源模块的安全性能评估与测试方法应包括以下几个方面: 1. 输入安全性测试:包括输入电压范围、输入电压稳定性、输入电流范围、输入电流保护等方面的测试。测试方法可以是逐步增加输入电压或输入电流,观察模块的工作状态和保护功能。
DC电源模块的安全性能评估与测试方法
|
21天前
|
人工智能 数据可视化 测试技术
精准高效测试计划,人工智能帮你制定
测试计划文档包括测试范围、方法、资源和进度,涉及测试项、特性、任务、执行者和风险控制。测试经理需制定文档大纲,细化测试任务,如用例编写、执行、资源分配及风险管理。2周测试周期内,5名测试人员将进行单元、集成、功能、性能和安全测试,以及缺陷验证和总结报告。在实际操作中,需注意人员匹配、任务平衡和沟通协调。由于ChatGPT输出的甘特图有误,需手动修正,最终完成测试计划的可视化表示。实践中,明确需求、拆分任务和校验输出是关键。
18 0
|
24天前
|
人工智能 自然语言处理 搜索推荐
人工智能,应该如何测试?(八)企业级智能客服测试大模型 RAG
大模型如GPT虽表现出众,但在特定领域和实时信息方面表现不足,易产生“幻觉”即编造答案。其能力受限于训练数据,无法提供超出数据范围的专业知识。为解决此问题,采用意图识别模型预判问题归属,结合检索增强生成(RAG)技术,通过检索相关信息注入大模型以提升回答质量。测试人员利用RAG评估模型效果,有时借助GPT进行自动化评分,尤其是在非专业领域,但GPT评分的准确性仍有限,人工评估更为可靠。
18 0
|
24天前
|
人工智能 搜索推荐 算法
人工智能,应该如何测试?(七)大模型客服系统测试
这篇文稿讨论了企业级对话机器人的知识引擎构建,强调了仅靠大模型如 GPT 是不够的,需要专业领域的知识库。知识引擎的构建涉及文档上传、解析、拆分和特征向量等步骤。文档解析是难点,因文档格式多样,需将内容自动提取。文档拆分按语义切片,以便针对性地回答用户问题。词向量用于表示词的关联性,帮助模型理解词义关系。知识引擎构建完成后,通过语义检索模型或问答模型检索答案。测试环节涵盖文档解析的准确性、问答模型的正确率及意图识别模型的性能。整个过程包含大量模型组合和手动工作,远非简单的自动化任务。
42 0
|
24天前
|
人工智能 自然语言处理 算法
人工智能,应该如何测试?(五)ASR 效果测试介绍
ASR是自动语音识别技术,将语音转化为文本,涉及多学科知识。数据收集是关键,包括特定人/非特定人、词汇量大小、发音方式、方言和情感等多种类别,高质量数据成本高。ASR流程包括数据收集、标注、输入算法得到文本输出并评估。常用评估指标有字错率(WER)、字正确率及插入/删除/替换率。数据标注需严格遵循规范,工作量大,而Levenshtein库可用于自动化效果评测。在AI领域,大部分时间投入在数据处理上。
30 0
|
24天前
|
人工智能 分布式计算 Kubernetes
人工智能,应该如何测试?(三)数据构造与性能测试篇
本文探讨了人工智能场景中的性能测试,区别于传统互联网测试,其复杂性更高。主要关注点包括两类AI产品——业务类和平台类,后者涉及AI全生命周期,测试难度更大。测试重点是模型训练的性能,特别是数据模拟。需要构造大量结构化数据,如不同规模、分布、分片和特征规模的数据,以评估算法效率。此外,还涉及模拟设备规模(如视频流)和节点规模(边缘计算),以测试在大规模负载下的系统性能。文中提到了使用工具如Spark、ffmpeg、流媒体服务器和Kubernetes(K8S)的扩展项目,如Kubemark,来模拟大规模环境。最后,文章介绍了使用Golang进行异步IO操作以构建海量小文件,优化IO性能。
48 0
|
24天前
|
机器学习/深度学习 人工智能 文字识别
|
2月前
|
传感器 监控 算法
【软件设计师备考 专题 】模块测试的方法和实践
【软件设计师备考 专题 】模块测试的方法和实践
73 0

热门文章

最新文章