Mycat(4):消息表mysql数据库分表实践

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 本文的原文连接是: http://blog.csdn.net/freewebsys/article/details/46882777 未经博主允许不得转载。1,业务需求比如一个社交软件,比如像腾讯的qq。可以进行群聊天(gid),也可以单人聊天。 这里面使用到了数据库中间件mycat,和mysql数据表分区。 关于mycat分区参考: 【 数据库垂直拆分,水平拆

本文的原文连接是: http://blog.csdn.net/freewebsys/article/details/46882777 未经博主允许不得转载。

1,业务需求

比如一个社交软件,比如像腾讯的qq。可以进行群聊天(gid),也可以单人聊天。
这里面使用到了数据库中间件mycat,和mysql数据表分区。
关于mycat分区参考:
【 数据库垂直拆分,水平拆分利器,cobar升级版mycat】
http://blog.csdn.net/freewebsys/article/details/44046365

2,具体方案设置分区

利用mysql分区,假设mysql数据表简单的为:

CREATE TABLE `group_msg` (
  `id` bigint(20) NOT NULL,
  `gid` bigint(20) DEFAULT NULL COMMENT '',
  `content` varchar(4000),
  `create_time` datetime DEFAULT NULL,
  PRIMARY KEY (`id`,`gid`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8
PARTITION BY KEY(`gid`) 
PARTITIONS 100;

数据表中按照gid进行分区,id不是自增,而是使用全局变量生成的。
在mycat中带全局变量生成的函数。这里有个技巧,按照每一个群组做一个全局的id,每个群组的消息都是从1开始。这样每个群组的id就是聊天信息的总数,方便分页查询历史记录使用。历史记录表后面继续分析。

参考:http://dev.mysql.com/doc/refman/5.1/en/partitioning-limitations.html

分区表可以设置的大些,因为数据放在本地切分成多个文件成本比较低。

3,配置mycat分表

由于mycat配置分表是按照分库进行的。所有需要创建多个数据库。
比起表分区是麻烦点。
参考之前博客:
【Mycat 水平分表,垂直分表实践(2)】博客数据表拆分和全局id
http://blog.csdn.net/freewebsys/article/details/44399901
其中规则xml的配置如下:

<!DOCTYPE mycat:rule SYSTEM "rule.dtd">
<mycat:rule xmlns:mycat="http://org.opencloudb/">
    <!--article 分区配置,按照id进行模10,如果拆分成20个库模20。-->
    <tableRule name="mod-long">
        <rule>
            <columns>user_id</columns>
            <algorithm>mod-long</algorithm>
        </rule>
    </tableRule>
    <function name="mod-long" 
    class="org.opencloudb.route.function.PartitionByMod">
        <property name="count">10</property>
    </function>

</mycat:rule>

分区schema配置文件:

<?xml version="1.0"?>
<!DOCTYPE mycat:schema SYSTEM "schema.dtd">

        <schema name="mycat" checkSQLschema="false" sqlMaxLimit="100">
                <table name="MYCAT_SEQUENCE" primaryKey="name" type="global" dataNode="nodeUser" />
        </schema>

        <schema name="group_msg" checkSQLschema="false" sqlMaxLimit="100">
            <table name="group_msg" primaryKey="gid" dataNode="nodeGroupMsg01,nodeGroupMsg02,nodeGroupMsg03,nodeGroupMsg04,nodeGroupMsg05,nodeGroupMsg06,nodeGroupMsg07,nodeGroupMsg08,nodeGroupMsg09,nodeGroupMsg10" rule="mod-long" />
        </schema>

        <!--拆分成5 组机器,每个机器上面两个数据库。如果压力大,直接拆分成10个机器,再多拆成20个库。-->
        <dataNode name="nodeGroupMsg01" dataHost="dataHost01" database="group_msg_01" />
        <dataNode name="nodeGroupMsg02" dataHost="dataHost01" database="group_msg_02" />

        <dataNode name="nodeGroupMsg03" dataHost="dataHost02" database="group_msg_03" />
        <dataNode name="nodeGroupMsg04" dataHost="dataHost02" database="group_msg_04" />

        <dataNode name="nodeGroupMsg05" dataHost="dataHost03" database="group_msg_05" />
        <dataNode name="nodeGroupMsg06" dataHost="dataHost03" database="group_msg_06" />

        <dataNode name="nodeGroupMsg07" dataHost="dataHost04" database="group_msg_07" />
        <dataNode name="nodeGroupMsg08" dataHost="dataHost04" database="group_msg_08" />

        <dataNode name="nodeGroupMsg09" dataHost="dataHost05" database="group_msg_09" />
        <dataNode name="nodeGroupMsg10" dataHost="dataHost05" database="group_msg_10" />

        <dataHost name="dataHost01" maxCon="1000" minCon="10" balance="0"
                writeType="0" dbType="mysql" dbDriver="native">
                <heartbeat>select 1</heartbeat>
                <writeHost host="hostM1" url="192.168.100.1:3306" user="root" password="root"/>
        </dataHost>

        <dataHost name="dataHost02" maxCon="1000" minCon="10" balance="0"
                writeType="0" dbType="mysql" dbDriver="native">
                <heartbeat>select 1</heartbeat>
                <writeHost host="hostM1" url="192.168.100.2:3306" user="root" password="root"/>
        </dataHost>

        <dataHost name="dataHost03" maxCon="1000" minCon="10" balance="0"
                writeType="0" dbType="mysql" dbDriver="native">
                <heartbeat>select 1</heartbeat>
                <writeHost host="hostM1" url="192.168.100.3:3306" user="root" password="root"/>
        </dataHost>

        <dataHost name="dataHost04" maxCon="1000" minCon="10" balance="0"
                writeType="0" dbType="mysql" dbDriver="native">
                <heartbeat>select 1</heartbeat>
                <writeHost host="hostM1" url="192.168.100.4:3306" user="root" password="root"/>
        </dataHost>

        <dataHost name="dataHost05" maxCon="1000" minCon="10" balance="0"
                writeType="0" dbType="mysql" dbDriver="native">
                <heartbeat>select 1</heartbeat>
                <writeHost host="hostM1" url="192.168.100.5:3306" user="root" password="root"/>
        </dataHost>

</mycat:schema>

考虑按照数据库拆分成本比较高,直接拆分成10个数据库,分别放到5个机器上面。如果压力大可以直接放到10个机器上面。

实际上表分区加上mycat,一个拆了100*10个文件。按照每个文件能承载1000w条记录算,可以承受100亿数据。
这个当然是理论了。假设日活100w,每人发10条,基本上够2-3年使用的了。

4,总结

本文的原文连接是: http://blog.csdn.net/freewebsys/article/details/46882777 未经博主允许不得转载。

这个只是消息表的一个简单的设计方案。通过使用成熟的组件搭建的分表方案。同时利用了mysql分区和mycat分表两个结合下。
毕竟一个mysql物理机器不能分太多文件,两个结合起来效率就高了。达到一个运维成本低,毕竟线上mysql数据库要配置master-slave,拆的多维护的多。

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
目录
相关文章
|
6月前
|
人工智能 前端开发 JavaScript
代码采纳率从 22% 到 33%,通义灵码辅助数据库智能编码实践
通义灵码本质上是一个AI agent,它已经进行了大量的优化。然而,为了更完美或有效地调用模型的潜在能力,我们在使用时仍需掌握一些技巧。通常,大多数人在使用通义灵码时会直接上手,这是 AI agent 的一个优势,即 zero shot 使用,无需任何上下文即可直接使用通义灵码的能力。
|
6月前
|
Ubuntu 关系型数据库 MySQL
容器技术实践:在Ubuntu上使用Docker安装MySQL的步骤。
通过以上的操作,你已经步入了Docker和MySQL的世界,享受了容器技术给你带来的便利。这个旅程中你可能会遇到各种挑战,但是只要你沿着我们划定的路线行进,你就一定可以达到目的地。这就是Ubuntu、Docker和MySQL的灵魂所在,它们为你开辟了一条通往新探索的道路,带你亲身感受到了技术的力量。欢迎在Ubuntu的广阔大海中探索,用Docker技术引领你的航行,随时准备感受新技术带来的震撼和乐趣。
288 16
|
6月前
|
数据库
|
8月前
|
关系型数据库 OLAP API
非“典型”向量数据库AnalyticDB PostgreSQL及RAG服务实践
本文介绍了非“典型”向量数据库AnalyticDB PostgreSQL及其RAG(检索增强生成)服务的实践应用。 AnalyticDB PostgreSQL不仅具备强大的数据分析能力,还支持向量查询、全文检索和结构化查询的融合,帮助企业高效构建和管理知识库。
435 19
|
8月前
|
缓存 NoSQL JavaScript
Vue.js应用结合Redis数据库:实践与优化
将Vue.js应用与Redis结合,可以实现高效的数据管理和快速响应的用户体验。通过合理的实践步骤和优化策略,可以充分发挥两者的优势,提高应用的性能和可靠性。希望本文能为您在实际开发中提供有价值的参考。
181 11
|
9月前
|
弹性计算 安全 关系型数据库
活动实践 | 自建数据库迁移到云数据库
通过阿里云RDS,用户可获得稳定、安全的企业级数据库服务,无需担心数据库管理与维护。该方案使用RDS确保数据库的可靠性、可用性和安全性,结合ECS和DTS服务,实现自建数据库平滑迁移到云端,支持WordPress等应用的快速部署与运行。通过一键部署模板,用户能迅速搭建ECS和RDS实例,完成数据迁移及应用上线,显著提升业务灵活性和效率。
|
9月前
|
缓存 关系型数据库 MySQL
MySQL 索引优化与慢查询优化:原理与实践
通过本文的介绍,希望您能够深入理解MySQL索引优化与慢查询优化的原理和实践方法,并在实际项目中灵活运用这些技术,提升数据库的整体性能。
538 5
|
9月前
|
存储 关系型数据库 MySQL
PHP与MySQL动态网站开发:从基础到实践####
本文将深入探讨PHP与MySQL的结合使用,展示如何构建一个动态网站。通过一系列实例和代码片段,我们将逐步了解数据库连接、数据操作、用户输入处理及安全防护等关键技术点。无论您是初学者还是有经验的开发者,都能从中获益匪浅。 ####
|
10月前
|
关系型数据库 MySQL Java
MySQL索引优化与Java应用实践
【11月更文挑战第25天】在大数据量和高并发的业务场景下,MySQL数据库的索引优化是提升查询性能的关键。本文将深入探讨MySQL索引的多种类型、优化策略及其在Java应用中的实践,通过历史背景、业务场景、底层原理的介绍,并结合Java示例代码,帮助Java架构师更好地理解并应用这些技术。
263 2
|
9月前
|
运维 监控 Cloud Native
云原生之运维监控实践:使用 taosKeeper 与 TDinsight 实现对 时序数据库TDengine 服务的监测告警
在数字化转型的过程中,监控与告警功能的优化对保障系统的稳定运行至关重要。本篇文章是“2024,我想和 TDengine 谈谈”征文活动的三等奖作品之一,详细介绍了如何利用 TDengine、taosKeeper 和 TDinsight 实现对 TDengine 服务的状态监控与告警功能。作者通过容器化安装 TDengine 和 Grafana,演示了如何配置 Grafana 数据源、导入 TDinsight 仪表板、以及如何设置告警规则和通知策略。欢迎大家阅读。
293 0

热门文章

最新文章

推荐镜像

更多