5.2 Windows驱动开发:内核取KERNEL模块基址

简介: 模块是程序加载时被动态装载的,模块在装载后其存在于内存中同样存在一个内存基址,当我们需要操作这个模块时,通常第一步就是要得到该模块的内存基址,模块分为用户模块和内核模块,这里的用户模块指的是应用层进程运行后加载的模块,内核模块指的是内核中特定模块地址,本篇文章将实现一个获取驱动`ntoskrnl.exe`的基地址以及长度,此功能是驱动开发中尤其是安全软件开发中必不可少的一个功能。

模块是程序加载时被动态装载的,模块在装载后其存在于内存中同样存在一个内存基址,当我们需要操作这个模块时,通常第一步就是要得到该模块的内存基址,模块分为用户模块和内核模块,这里的用户模块指的是应用层进程运行后加载的模块,内核模块指的是内核中特定模块地址,本篇文章将实现一个获取驱动ntoskrnl.exe的基地址以及长度,此功能是驱动开发中尤其是安全软件开发中必不可少的一个功能。

关于该程序的解释,官方的解析是这样的ntoskrnl.exeWindows操作系统的一个重要内核程序,里面存储了大量的二进制内核代码,用于调度系统时使用,也是操作系统启动后第一个被加载的程序,通常该进程在任务管理器中显示为System

使用ARK工具也可看出其代表的是第一个驱动模块。

那么如何使用代码得到如上图中所展示的基地址以及大小呢,实现此功能我们需要调用ZwQuerySystemInformation这个API函数,这与上一篇文章《判断自身是否加载成功》所使用的NtQuerySystemInformation只是开头部分不同,但其本质上是不同的,如下是一些参考资料;

  • 从内核模式调用NtZw系列API,其最终都会连接到nooskrnl.lib导出库:

    • Nt系列API将直接调用对应的函数代码,而Zw系列API则通过调用KiSystemService最终跳转到对应的函数代码。
    • 重要的是两种不同的调用对内核中previous mode的改变,如果是从用户模式调用Native APIprevious mode是用户态,如果从内核模式调用Native APIprevious mode是内核态。
    • 如果previous为用户态时Native API将对传递的参数进行严格的检查,而为内核态时则不会检查。

调用Nt API时不会改变previous mode的状态,调用Zw API时会将previous mode改为内核态,因此在进行Kernel Mode Driver开发时可以使用Zw系列API可以避免额外的参数列表检查,提高效率。Zw*会设置KernelMode已避免检查,Nt*不会自动设置,如果是KernelMode当然没问题,如果就UserMode就挂了。

回到代码上来,下方代码就是获取ntoskrnl.exe基地址以及长度的具体实现,核心代码就是调用ZwQuerySystemInformation得到SystemModuleInformation,里面的对比部分是在比较当前获取的地址是否超出了ntoskrnl的最大和最小范围。

#include <ntifs.h>

static PVOID g_KernelBase = 0;
static ULONG g_KernelSize = 0;

#pragma pack(4)
typedef struct _PEB32
{
   
   
    UCHAR InheritedAddressSpace;
    UCHAR ReadImageFileExecOptions;
    UCHAR BeingDebugged;
    UCHAR BitField;
    ULONG Mutant;
    ULONG ImageBaseAddress;
    ULONG Ldr;
    ULONG ProcessParameters;
    ULONG SubSystemData;
    ULONG ProcessHeap;
    ULONG FastPebLock;
    ULONG AtlThunkSListPtr;
    ULONG IFEOKey;
    ULONG CrossProcessFlags;
    ULONG UserSharedInfoPtr;
    ULONG SystemReserved;
    ULONG AtlThunkSListPtr32;
    ULONG ApiSetMap;
} PEB32, *PPEB32;

typedef struct _PEB_LDR_DATA32
{
   
   
    ULONG Length;
    UCHAR Initialized;
    ULONG SsHandle;
    LIST_ENTRY32 InLoadOrderModuleList;
    LIST_ENTRY32 InMemoryOrderModuleList;
    LIST_ENTRY32 InInitializationOrderModuleList;
} PEB_LDR_DATA32, *PPEB_LDR_DATA32;

typedef struct _LDR_DATA_TABLE_ENTRY32
{
   
   
    LIST_ENTRY32 InLoadOrderLinks;
    LIST_ENTRY32 InMemoryOrderLinks;
    LIST_ENTRY32 InInitializationOrderLinks;
    ULONG DllBase;
    ULONG EntryPoint;
    ULONG SizeOfImage;
    UNICODE_STRING32 FullDllName;
    UNICODE_STRING32 BaseDllName;
    ULONG Flags;
    USHORT LoadCount;
    USHORT TlsIndex;
    LIST_ENTRY32 HashLinks;
    ULONG TimeDateStamp;
} LDR_DATA_TABLE_ENTRY32, *PLDR_DATA_TABLE_ENTRY32;
#pragma pack()

typedef struct _RTL_PROCESS_MODULE_INFORMATION
{
   
   
    HANDLE Section;
    PVOID MappedBase;
    PVOID ImageBase;
    ULONG ImageSize;
    ULONG Flags;
    USHORT LoadOrderIndex;
    USHORT InitOrderIndex;
    USHORT LoadCount;
    USHORT OffsetToFileName;
    UCHAR  FullPathName[256];
} RTL_PROCESS_MODULE_INFORMATION, *PRTL_PROCESS_MODULE_INFORMATION;

typedef struct _RTL_PROCESS_MODULES
{
   
   
    ULONG NumberOfModules;
    RTL_PROCESS_MODULE_INFORMATION Modules[1];
} RTL_PROCESS_MODULES, *PRTL_PROCESS_MODULES;

typedef enum _SYSTEM_INFORMATION_CLASS
{
   
   
    SystemModuleInformation = 0xb,
} SYSTEM_INFORMATION_CLASS;

// 取出KernelBase基地址
// By: lyshark
PVOID UtilKernelBase(OUT PULONG pSize)
{
   
   
    NTSTATUS status = STATUS_SUCCESS;
    ULONG bytes = 0;
    PRTL_PROCESS_MODULES pMods = 0;
    PVOID checkPtr = 0;
    UNICODE_STRING routineName;

    if (g_KernelBase != 0)
    {
   
   
        if (pSize)
            *pSize = g_KernelSize;
        return g_KernelBase;
    }

    RtlInitUnicodeString(&routineName, L"NtOpenFile");

    checkPtr = MmGetSystemRoutineAddress(&routineName);
    if (checkPtr == 0)
        return 0;

    __try
    {
   
   
        status = ZwQuerySystemInformation(SystemModuleInformation, 0, bytes, &bytes);
        if (bytes == 0)
        {
   
   
            DbgPrint("Invalid SystemModuleInformation size\n");
            return 0;
        }

        pMods = (PRTL_PROCESS_MODULES)ExAllocatePoolWithTag(NonPagedPoolNx, bytes, "lyshark");
        RtlZeroMemory(pMods, bytes);

        status = ZwQuerySystemInformation(SystemModuleInformation, pMods, bytes, &bytes);

        if (NT_SUCCESS(status))
        {
   
   
            PRTL_PROCESS_MODULE_INFORMATION pMod = pMods->Modules;

            for (ULONG i = 0; i < pMods->NumberOfModules; i++)
            {
   
   
                if (checkPtr >= pMod[i].ImageBase &&
                    checkPtr < (PVOID)((PUCHAR)pMod[i].ImageBase + pMod[i].ImageSize))
                {
   
   
                    g_KernelBase = pMod[i].ImageBase;
                    g_KernelSize = pMod[i].ImageSize;
                    if (pSize)
                        *pSize = g_KernelSize;
                    break;
                }
            }
        }
    }
    __except (EXCEPTION_EXECUTE_HANDLER)
    {
   
   
        return 0;
    }

    if (pMods)
        ExFreePoolWithTag(pMods, "lyshark");
    return g_KernelBase;
}

VOID UnDriver(PDRIVER_OBJECT driver)
{
   
   
    DbgPrint(("Uninstall Driver Is OK \n"));
}

NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
   
   
    DbgPrint(("hello lyshark \n"));

    PULONG ulong = 0;
    UtilKernelBase(ulong);
    DbgPrint("ntoskrnl.exe 模块基址: 0x%p \n", g_KernelBase);
    DbgPrint("模块大小: 0x%p \n", g_KernelSize);

    Driver->DriverUnload = UnDriver;
    return STATUS_SUCCESS;
}

我们编译并运行上方代码,效果如下:

目录
相关文章
|
6天前
|
IDE 关系型数据库 开发工具
使用Visual Basic进行Windows窗体开发
【4月更文挑战第27天】本文介绍了使用Visual Basic进行Windows窗体(WinForms)开发的步骤,从搭建开发环境到创建、设计用户界面,再到编写事件驱动的代码和数据绑定。Visual Basic结合WinForms提供了一种易学易用的桌面应用开发方案。通过调试、优化、部署和维护,开发者可以构建专业应用程序。随着技术发展,掌握最新UI设计和开发工具对于保持竞争力至关重要。本文为初学者提供了基础指导,鼓励进一步探索和学习。
|
3天前
|
前端开发 Linux iOS开发
【Flutter前端技术开发专栏】Flutter在桌面应用(Windows/macOS/Linux)的开发实践
【4月更文挑战第30天】Flutter扩展至桌面应用开发,允许开发者用同一代码库构建Windows、macOS和Linux应用,提高效率并保持平台一致性。创建桌面应用需指定目标平台,如`flutter create -t windows my_desktop_app`。开发中注意UI适配、性能优化、系统交互及测试部署。UI适配利用布局组件和`MediaQuery`,性能优化借助`PerformanceLogging`、`Isolate`和`compute`。
【Flutter前端技术开发专栏】Flutter在桌面应用(Windows/macOS/Linux)的开发实践
|
4天前
|
编解码 Linux Windows
FFmpeg开发笔记(十三)Windows环境给FFmpeg集成libopus和libvpx
本文档介绍了在Windows环境下如何为FFmpeg集成libopus和libvpx库。首先,详细阐述了安装libopus的步骤,包括下载源码、配置、编译和安装,并更新环境变量。接着,同样详细说明了libvpx的安装过程,注意需启用--enable-pic选项以避免编译错误。最后,介绍了重新配置并编译FFmpeg以启用这两个库,通过`ffmpeg -version`检查是否成功集成。整个过程参照了《FFmpeg开发实战:从零基础到短视频上线》一书的相关章节。
19 0
FFmpeg开发笔记(十三)Windows环境给FFmpeg集成libopus和libvpx
|
6天前
|
编解码 Linux Windows
FFmpeg开发笔记(十一)Windows环境给FFmpeg集成vorbis和amr
在Windows环境下,为FFmpeg集成音频编解码库,包括libogg、libvorbis和opencore-amr,涉及下载源码、配置、编译和安装步骤。首先,安装libogg,通过配置、make和make install命令完成,并更新PKG_CONFIG_PATH。接着,安装libvorbis,同样配置、编译和安装,并修改pkgconfig文件。之后,安装opencore-amr。最后,重新配置并编译FFmpeg,启用ogg和amr支持,通过ffmpeg -version检查是否成功。整个过程需确保环境变量设置正确,并根据路径添加相应库。
22 1
FFmpeg开发笔记(十一)Windows环境给FFmpeg集成vorbis和amr
|
28天前
|
Linux 编译器 C语言
FFmpeg开发笔记(二)搭建Windows系统的开发环境
在Windows上学习FFmpeg通常较困难,但通过安装预编译的FFmpeg开发包可以简化流程。首先需要安装MSYS2来模拟Linux环境。下载并执行MSYS2安装包,然后修改msys2_shell.cmd以继承Windows的Path变量。使用pacman安装必要的编译工具。接着,下载预编译的FFmpeg Windows包,解压并配置系统Path。最后,在MSYS2环境中运行`ffmpeg -version`确认安装成功。欲深入学习FFmpeg开发,推荐阅读《FFmpeg开发实战:从零基础到短视频上线》。
32 4
FFmpeg开发笔记(二)搭建Windows系统的开发环境
|
2月前
|
数据可视化 数据库 C++
Qt 5.14.2揭秘高效开发:如何用VS2022快速部署Qt 5.14.2,打造无与伦比的Windows应用
Qt 5.14.2揭秘高效开发:如何用VS2022快速部署Qt 5.14.2,打造无与伦比的Windows应用
|
4月前
|
C# 数据安全/隐私保护 开发者
Windows平台RTMP推送|轻量级RTSP服务录像模块如何支持中文路径?
Windows平台RTMP推送|轻量级RTSP服务录像模块如何支持中文路径?
|
5月前
|
监控 安全 API
5.9 Windows驱动开发:内核InlineHook挂钩技术
在上一章`《内核LDE64引擎计算汇编长度》`中,`LyShark`教大家如何通过`LDE64`引擎实现计算反汇编指令长度,本章将在此基础之上实现内联函数挂钩,内核中的`InlineHook`函数挂钩其实与应用层一致,都是使用`劫持执行流`并跳转到我们自己的函数上来做处理,唯一的不同的是内核`Hook`只针对`内核API`函数,但由于其身处在`最底层`所以一旦被挂钩其整个应用层都将会受到影响,这就直接决定了在内核层挂钩的效果是应用层无法比拟的,对于安全从业者来说学会使用内核挂钩也是很重要。
40 1
5.9 Windows驱动开发:内核InlineHook挂钩技术
|
5月前
|
监控 API C++
8.4 Windows驱动开发:文件微过滤驱动入门
MiniFilter 微过滤驱动是相对于`SFilter`传统过滤驱动而言的,传统文件过滤驱动相对来说较为复杂,且接口不清晰并不符合快速开发的需求,为了解决复杂的开发问题,微过滤驱动就此诞生,微过滤驱动在编写时更简单,多数`IRP`操作都由过滤管理器`(FilterManager或Fltmgr)`所接管,因为有了兼容层,所以在开发中不需要考虑底层`IRP`如何派发,更无需要考虑兼容性问题,用户只需要编写对应的回调函数处理请求即可,这极大的提高了文件过滤驱动的开发效率。
43 0
|
5月前
|
监控 Windows
7.4 Windows驱动开发:内核运用LoadImage屏蔽驱动
在笔者上一篇文章`《内核监视LoadImage映像回调》`中`LyShark`简单介绍了如何通过`PsSetLoadImageNotifyRoutine`函数注册回调来`监视驱动`模块的加载,注意我这里用的是`监视`而不是`监控`之所以是监视而不是监控那是因为`PsSetLoadImageNotifyRoutine`无法实现参数控制,而如果我们想要控制特定驱动的加载则需要自己做一些事情来实现,如下`LyShark`将解密如何实现屏蔽特定驱动的加载。
33 0
7.4 Windows驱动开发:内核运用LoadImage屏蔽驱动

热门文章

最新文章