Rust 编译为 WebAssembly 在前端项目中使用(二)

简介: Rust 编译为 WebAssembly 在前端项目中使用(二)

2.6 构建Web服务器

既然,我们通过上述的魔法,将Rust程序编译为了可以在浏览器环境下引用执行的格式。为了这口醋,我们还专门包顿饺子


我们需要一个Web服务器来测试我们的WebAssembly程序。我们将使用Webpack,我们需要创建三个文件:index.jspackage.jsonwebpack.config.js

下面的代码,我们最熟悉不过了,就不解释了。

index.js

// 直接引入了,刚才编译后的文件
const rust = import('./pkg/hello_world.js');
rust
  .then(m => m.helloworld('World!'))
  .catch(console.error);

package.json

{
  "scripts": {
    "build": "webpack",
    "serve": "webpack-dev-server"
  },
  "devDependencies": {
    "@wasm-tool/wasm-pack-plugin": "0.4.2",
    "text-encoding": "^0.7.0",
    "html-webpack-plugin": "^3.2.0",
    "webpack": "^4.29.4",
    "webpack-cli": "^3.1.1",
    "webpack-dev-server": "^3.1.0"
  }
}

webpack.config.js

const path = require('path');
const HtmlWebpackPlugin = require('html-webpack-plugin');
const webpack = require('webpack');
const WasmPackPlugin = require("@wasm-tool/wasm-pack-plugin");
module.exports = {
    entry: './index.js',
    output: {
        path: path.resolve(__dirname, 'dist'),
        filename: 'index.js',
    },
    plugins: [
        new HtmlWebpackPlugin(),
        new WasmPackPlugin({
            crateDirectory: path.resolve(__dirname, ".")
        }),
        // 让这个示例在不包含`TextEncoder`或`TextDecoder`的Edge浏览器中正常工作。
        new webpack.ProvidePlugin({
            TextDecoder: ['text-encoding', 'TextDecoder'],
            TextEncoder: ['text-encoding', 'TextEncoder']
        })
    ],
    mode: 'development'
};

安装指定的依赖。

npm install webpack --save-dev
npm install webpack-cli --save-dev
npm install webpack-dev-server --save-dev
npm install html-webpack-plugin --save-dev
npm install @wasm-tool/wasm-pack-plugin --save-dev
npm install text-encoding --save-dev

2.7 构建&运行程序

使用npm run build构建程序。

使用npm run serve运行Hello World程序

在浏览器中打开localhost:8080,我们将看到一个显示 Hello World! 的弹窗。

image.png

到目前为止,我们已经构建了一个wasm并且能够和js实现功能交互的项目。其实,到这里已经完成了,我们这篇文章的使命。但是,在这里戛然而止,感觉缺失点啥。所以,我们继续深挖上面的项目的实现原理。


3. 原理探析

在使用cargowasm_bindgen编译源代码时,会在pkg文件中自动生成以下文件:

  • "hello_world_bg.wasm"
  • "hello_world.js"
  • "hello_world.d.ts"
  • "package.json"

这些文件也可以通过使用以下wasm-bindgen命令手动生成

bash

复制代码

wasm-bindgen target/wasm32-unknown-unknown/debug/hello_world.wasm --out-dir ./pkg

浏览器调用顺序

以下显示了当我们在浏览器中访问localhost:8080时发生的函数调用序列。

  1. index.js
  2. hello_world.js (调用hello_world_bg.js)
  3. helloworld_bg.wasm

index.js

const rust = import('./pkg/hello_world.js');
rust
  .then(m => m.helloworld('World!'))
  .catch(console.error);

index.js 导入了 hello_world.js 并调用其中的 helloworld 函数。

hello_world.js

下面是hello_world.js的内容,在其中它调用了helloworld_bg.wasm

import * as wasm from "./hello_world_bg.wasm";
import { __wbg_set_wasm } from "./hello_world_bg.js";
__wbg_set_wasm(wasm);
export * from "./hello_world_bg.js";

hello_world_bg.js

// ...省去了部分代码
export function helloworld(name) {
    const ptr0 = passStringToWasm0(name, wasm.__wbindgen_malloc, wasm.__wbindgen_realloc);
    const len0 = WASM_VECTOR_LEN;
    wasm.helloworld(ptr0, len0);
}

hello_world_bg.js 文件是由wasm-bindgen自动生成的,它包含了用于将DOMJavaScript函数导入到Rust中的JavaScript粘合代码。它还在生成的WebAssembly函数上向JavaScript公开了API。

Rust WebAssembly专注于将WebAssembly与现有的JavaScript应用程序集成在一起。为了实现这一目标,我们需要在JavaScriptWebAssembly函数之间传递不同的值、对象或结构。这并不容易,因为需要协调两个不同系统的不同对象类型

更糟糕的是,当前WebAssembly仅支持整数浮点数,不支持字符串。这意味着我们不能简单地将字符串传递给WebAssembly函数。

要将字符串传递给WebAssembly,我们需要将字符串转换为数字(请注意在webpack.config.js中指定的TextEncoderAPI),将这些数字放入WebAssembly的内存空间中,最后返回一个指向字符串的指针WebAssembly函数,以便在JavaScript中使用它。在最后,我们需要释放WebAssembly使用的字符串内存空间。

如果我们查看上面的JavaScript代码,这正是自动执行的操作。helloworld函数首先调用passStringToWasm

  • 这个函数在WebAssembly创建一些内存空间,将我们的字符串转换为数字,将数字写入内存空间,并返回一个指向字符串的指针。

image.png

  • 然后将指针传递给wasm.helloworld来执行JavaScriptalert。最后,wasm.__wbindgen_free释放了内存。
  1. image.png
  2. image.png
  3. image.png
  4. image.png

如果只是传递一个简单的字符串,我们可能可以自己处理,但考虑到当涉及到更复杂的对象和结构时,这个工作会很快变得非常复杂。这说明了wasm-bindgenRust WebAssembly开发中的重要性。

反编译wasm到txt

在前面的步骤中,我们注意到wasm-bindgen生成了一个hello_world.js文件,其中的函数调用到我们生成的hello_world_bg.wasm中的WebAssembly代码。

基本上,hello_world.js充当其他JavaScript(如index.js)与生成的WebAssemblyhelloworld_bg.wasm之间的桥梁。

我们可以通过输入以下命令进一步探索helloworld_bg.wasm

wasm2wat hello_world_bg.wasm > hello_world.txt

这个命令使用wabtWebAssembly转换为WebAssembly文本格式,并将其保存到一个hello_world.txt文件中。打开helloworld.txt文件,然后查找$helloworld函数。这是我们在src/lib.rs中定义的helloworld函数的生成WebAssembly函数。

$helloworld函数

image.png

helloworld.txt中查找以下行:

(export "helloworld" (func $helloworld))

这一行导出了wasm.helloworld供宿主调用的WebAssembly函数。我们通过hello_world_bg.js中的wasm.helloworld来调用这个WebAssembly函数。

image.png

接下来,查找以下行:

(import "./hello_world_bg.js" "__wbg_alert_9ea5a791b0d4c7a3" (func $hello_world::alert::__wbg_alert_9ea5a791b0d4c7a3::h93c656ecd0e94e40 (type 4)))

这对应于在hello_world_bg.js中生成的以下JavaScript函数:

export function __wbg_alert_9ea5a791b0d4c7a3() { return logError(function (arg0, arg1) {
    alert(getStringFromWasm0(arg0, arg1));
}, arguments) };

这是wasm-bindgen提供的粘合部分,帮助我们在WebAssembly中使用JavaScript函数或DOM

最后,让我们看看wasm-bindgen生成的其他文件。

hello_world.d.ts

这个.d.ts文件包含JavaScript粘合的TypeScript类型声明,如果我们的现有JavaScript应用程序正在使用TypeScript,它会很有用。我们可以对调用WebAssembly函数进行类型检查,或者让我们的IDE提供自动完成。如果我们不使用TypeScript,可以安全地忽略这个文件。

package.json

package.json文件包含有关生成的JavaScriptWebAssembly包的元数据。它会自动从我们的Rust代码中填充所有npm依赖项,并使我们能够发布到npm


4. 内容拓展

再次看一下以下代码:

hello_world_bg.js

function helloworld(name) {
    const ptr0 = passStringToWasm0(name, wasm.__wbindgen_malloc, wasm.__wbindgen_realloc);
    const len0 = WASM_VECTOR_LEN;
    wasm.helloworld(ptr0, len0);
}

该代码用于分配和释放内存,这一切都是由程序自动处理的。不需要垃圾回收器或完整的框架引擎,使得使用Rust编写的WebAssembly应用程序或模块变得小巧且优化。其他需要垃圾回收器的语言将需要包含用于其底层框架引擎的wasm代码。因此,无论它们有多么优化,其大小都不会小于Rust提供的大小。这使得Rust WebAssembly成为一个不错的选择,如果我们需要将小型WebAssembly模块集成或注入到JavaScript Web应用程序中。

除了Hello World之外,还有一些其他需要注意的事项:

web-sys

使用wasm-bindgen,我们可以通过使用externRust WebAssembly中调用JavaScript函数。请记住src/lib.rs中的以下代码:

#[wasm_bindgen]
extern "C" {
    fn alert(s: &str);
}

Web具有大量API,从DOM操作到WebGL再到Web Audio等等。因此,如果我们的Rust WebAssembly程序增长,并且我们需要对Web API进行多次不同的调用,我们将需要花时间编写大量的extern代码。

web-sys充当wasm-bindgen的前端,为所有Web API提供原始绑定。

这意味着如果我们使用web-sys,可以节省时间,而不必编写extern代码。

image.png

引入web-sys

web-sys添加为Cargo.toml的依赖项:

[dependencies]
wasm-bindgen = "0.2"
[dependencies.web-sys]
version = "0.3"
features = [
]

为了保持构建速度非常快,web-sys将每个Web接口都封装在一个Cargo特性后面。在API文档中找到我们要使用的类型或方法;它将列出必须启用的特性才能访问该API。

例如,如果我们要查找window.resizeTo函数,我们会在API文档中搜索resizeTo。我们将找到web_sys::Window::resize_to函数,它需要启用Window特性。要访问该函数,我们在Cargo.toml中启用Window特性:

[dependencies.web-sys]
version = "0.3"
features = [
  "Window"
]

调用这个方法:

use wasm_bindgen::prelude::*;
use web_sys::Window;
#[wasm_bindgen]
pub fn make_the_window_small() {
    // 调整窗口大小为500px x 500px。
    let window = web_sys::window().unwrap();
    window.resize_to(500, 500)
        .expect("无法调整窗口大小");
}

这段代码的目的是调整浏览器窗口的大小为500x500像素,并演示了如何使用web-sys和启用的Cargo特性来调用Web API。


后记

分享是一种态度

全文完,既然看到这里了,如果觉得不错,随手点个赞和“在看”吧。

相关文章
|
9天前
|
前端开发 JavaScript 定位技术
一、前端高德地图注册、项目中引入、渲染标记(Marker)and覆盖物(Circle)
文章介绍了如何在前端项目中注册并使用高德地图API,包括注册高德开放平台账号、引入高德地图到项目、以及如何在地图上渲染标记(Marker)和覆盖物(Circle)。
25 1
|
2月前
|
开发者 C# Android开发
震惊!Xamarin 跨平台开发优势满满却也挑战重重,代码复用、熟悉语言与性能优势并存,学习曲线与差异处理何解?
【8月更文挑战第31天】Xamarin 与 C# 结合,为移动应用开发带来高效跨平台解决方案,使用单一语言和框架即可构建 iOS、Android 和 Windows 原生应用。本文通过问答形式探讨 Xamarin 和 C# 如何塑造移动开发的未来,并通过示例代码展示其实际应用。Xamarin 和 C# 的组合不仅提高了开发效率,还支持最新的移动平台功能,帮助开发者应对未来挑战,如物联网、人工智能和增强现实等领域的需求。
44 0
|
2月前
|
开发者 C# C++
揭秘:如何轻松驾驭Uno Platform,用C#和XAML打造跨平台神器——一步步打造你的高性能WebAssembly应用!
【8月更文挑战第31天】Uno Platform 是一个跨平台应用程序框架,支持使用 C# 和 XAML 创建多平台应用,包括 Web。通过编译为 WebAssembly,Uno Platform 可实现在 Web 上运行高性能、接近原生体验的应用。本文介绍如何构建高效的 WebAssembly 应用:首先确保安装最新版本的 Visual Studio 或 VS Code 并配置 Uno Platform 开发环境;接着创建新的 Uno Platform 项目;然后通过安装工具链并使用 Uno WebAssembly CLI 编译应用;最后添加示例代码并测试应用。
56 0
|
2月前
|
前端开发 开发者 Apache
揭秘Apache Wicket项目结构:如何打造Web应用的钢铁长城,告别混乱代码!
【8月更文挑战第31天】Apache Wicket凭借其组件化设计深受Java Web开发者青睐。本文详细解析了Wicket项目结构,帮助你构建可维护的大型Web应用。通过示例展示了如何使用Maven管理依赖,并组织页面、组件及业务逻辑,确保代码清晰易懂。Wicket提供的页面继承、组件重用等功能进一步增强了项目的可维护性和扩展性。掌握这些技巧,能够显著提升开发效率,构建更稳定的Web应用。
76 0
|
2月前
|
前端开发 程序员 API
从后端到前端的无缝切换:一名C#程序员如何借助Blazor技术实现全栈开发的梦想——深入解析Blazor框架下的Web应用构建之旅,附带实战代码示例与项目配置技巧揭露
【8月更文挑战第31天】本文通过详细步骤和代码示例,介绍了如何利用 Blazor 构建全栈 Web 应用。从创建新的 Blazor WebAssembly 项目开始,逐步演示了前后端分离的服务架构设计,包括 REST API 的设置及 Blazor 组件的数据展示。通过整合前后端逻辑,C# 开发者能够在统一环境中实现高效且一致的全栈开发。Blazor 的引入不仅简化了 Web 应用开发流程,还为习惯于后端开发的程序员提供了进入前端世界的桥梁。
56 0
|
2月前
|
前端开发 JavaScript 编译器
【性能革命】Angular Ivy编译器:一场前端开发者的极速盛宴,揭秘应用瘦身与提速的黑科技,让你的Angular项目焕发新生的终极指南
【8月更文挑战第31天】Angular Ivy编译器是Angular团队推出的更新,旨在改善应用性能,减少构建时间和代码量。自Angular 9起,Ivy成为默认编译器。本文通过案例分析,介绍Ivy的工作原理及其优势。以一个复杂应用为例,展示了Ivy如何通过减少生成的JavaScript代码量、优化模板表达式解析等方式提升性能。通过创建示例项目并比较启用与未启用Ivy的构建结果,证明了Ivy在构建速度和文件大小上的显著改进,同时提高了运行时性能。这对于追求高性能和快速开发的应用至关重要。
25 0
|
2月前
|
Rust 安全 JavaScript
Rust 和 WebAssembly 搞大事啦!代码在浏览器中运行,这波操作简直逆天!
【8月更文挑战第31天】《Rust 与 WebAssembly:将 Rust 代码运行在浏览器中》介绍了 Rust 和 WebAssembly 的强大结合。Rust 是一门安全高效的编程语言,而 WebAssembly 则是新兴的网页技术标准,两者结合使得 Rust 代码能在浏览器中运行,带来更高的性能和安全性。文章通过示例代码展示了如何将 Rust 函数编译为 WebAssembly 格式并在网页中调用,从而实现复杂高效的应用程序,同时确保了内存安全性和跨平台兼容性,为开发者提供了全新的可能性。
70 0
|
2月前
|
JavaScript 前端开发 API
解锁前端开发新境界:Vue.js携手Webpack,打造高效构建流程,你的项目值得拥有!
【8月更文挑战第30天】随着前端技术的发展,模块化与组件化趋势愈发显著。Vue.js 以其简洁的 API 和灵活的组件系统,深受开发者喜爱;Webpack 则凭借强大的模块打包能力成为前端工程化的基石。两者结合,不仅简化了组件编写与引用,还通过模块热替换、代码分割等功能大幅提升开发效率。本文将通过具体示例,展示如何利用 Vue.js 和 Webpack 构建高效、有序的前端开发环境。从安装配置到实际应用,逐步解析这一组合的优势所在。
37 0
|
2月前
|
Rust 安全 Go
揭秘Rust语言:为何它能让你在编程江湖中,既安全驰骋又高效超车,颠覆你的编程世界观!
【8月更文挑战第31天】Rust 是一门新兴的系统级编程语言,以其卓越的安全性、高性能和强大的并发能力著称。它通过独特的所有权和借用检查机制解决了内存安全问题,使开发者既能享受 C/C++ 的性能,又能避免常见的内存错误。Rust 支持零成本抽象,确保高级抽象不牺牲性能,同时提供模块化和并发编程支持,适用于系统应用、嵌入式设备及网络服务等多种场景。从简单的 “Hello World” 程序到复杂的系统开发,Rust 正逐渐成为现代软件开发的热门选择。
45 1
|
2月前
|
Rust 安全 编译器
初探 Rust 语言与环境搭建
Rust 是一门始于2006年的系统编程语言,由Mozilla研究员Graydon Hoare发起,旨在确保内存安全而不牺牲性能。通过所有权、借用和生命周期机制,Rust避免了空指针和数据竞争等问题,简化了并发编程。相较于C/C++,Rust在编译时预防内存错误,提供类似C++的语法和更高的安全性。Rust适用于系统编程、WebAssembly、嵌入式系统和工具开发等领域。其生态系统包括Cargo包管理器和活跃社区。学习资源如"The Book"和"Rust by Example"帮助新手入门。安装Rust可通过Rustup进行,支持跨平台操作。
114 2
初探 Rust 语言与环境搭建
下一篇
无影云桌面