一、为什么存在动态内存分配
我们已经掌握的内存开辟方式有:
int val = 10; //在栈空间上开辟四个字节 char arr[10] = {0}; //在栈空间上开辟10个字节的连续空间
但是上述的开辟空间的方式有两个特点:
- 空间开辟大小是固定的。
- 数组在申明的时候,必须指定数组的长度,它所需要的内存在编译时分配。
但是对于空间的需求,不仅仅是上述的情况。有时候我们需要的空间大小在程序运行的时候才能知道,那数组的编译时开辟空间的方式就不能满足了。这时候就只能试试动态存开辟了。
二、动态内存函数
1、malloc
malloc是C语言提供了一个动态内存开辟的函数。
void* malloc (size_t size); |
这个函数向内存申请一块连续可用的空间,并返回指向这块空间的指针。
- 如果开辟成功,则返回一个指向开辟好空间的指针
- 如果开辟失败,则返回一个NULL指针,因此malloc的返回值一定要做检查
- 返回值的类型是 void* ,所以malloc函数并不知道开辟空间的类型,具体在使用的时候使用者自己来决定
- 如果参数 size 为0,malloc的行为是标准是未定义的,取决于编译器
2、free
free是C语言提供的一个专门用来做动态内存的释放和回收的函数,函数原型如下:
void free (void* ptr); |
free函数用来释放动态开辟的内存。
- 如果参数 ptr 指向的空间不是动态开辟的,那free函数的行为是未定义的
- 如果参数 ptr 是NULL指针,则函数什么事都不做
注意:malloc和free都声明在 stdlib.h 头文件中。
3、calloc
calloc也是C语言提供用来动态内存分配的函数。原型如下:
void* calloc (size_t num, size_t size); |
函数的功能是:
- 为 num 个大小为 size 的元素开辟一块空间,并且把空间的每个字节初始化为 0
与函数 malloc 的区别:
- 只在于 calloc 会在返回地址之前把申请的空间的每个字节初始化为全 0
举个例子
#include <stdio.h> #include <stdlib.h> int main() { int *p = (int*)calloc(10, sizeof(int)); if(NULL != p) { //使用p } //使用结束释放p free(p); p = NULL; return 0; }
所以如何我们对申请的内存空间的内容要求初始化,那么可以很方便的使用calloc函数来完成任务。
4、realloc
realloc函数的出现让动态内存管理更加灵活。有时会我们发现过去申请的空间太小了,有时候我们又会觉得申请的空间过大了,那为了合理的时候内存,我们一定会对内存的大小做灵活的调整。那 realloc 函数就可以做到对动态开辟内存大小的调整。函数原型如下:
void* realloc (void* ptr, size_t size);
其中,ptr 是要调整的内存地址;size 调整之后新大小;返回值为调整之后的内存起始位置。这个函数调整原内存空间大小的基础上,还会将原来内存中的数据移动到新的空间。
realloc在调整内存空间的是存在两种情况:
- 情况1:原有空间之后有足够大的空间
- 情况2:原有空间之后没有足够大的空间
- 当是情况1 的时候,要扩展内存就直接原有内存之后直接追加空间,原来空间的数据不发生变化。
- 当是情况2 的时候,原有空间之后没有足够多的空间时,扩展的方法是:在堆空间上另找一个合适大小的连续空间来使用。这样函数返回的是一个新的内存地址。
由于上述的两种情况,realloc函数的使用就要注意一些。
三、常见的动态内存错误
1、对NULL指针的解引用操作
void test() { int *p = (int *)malloc(INT_MAX); *p = 20;//如果p的值是NULL,就会有问题 free(p); }
改正后
void test() { int *p = (int *)malloc(INT_MAX); if(p == NULL) { exit(-1); } *p = 20; free(p); }
2、对动态开辟空间的越界访问
void test() { int i = 0; int *p = (int *)malloc(10*sizeof(int)); if(NULL == p) { exit(EXIT_FAILURE); } for(i=0; i<=10; i++)//改为 for(i = 0; i < 10; i++) { *(p+i) = i;//当i是10的时候越界访问 } free(p); }
3、使用free释放一块动态开辟内存的一部分
void test() { int *p = (int *)malloc(100); p++; free(p);//p不再指向动态内存的起始位置 }
4、对非动态开辟内存使用free释放
void test() { int a = 10; int *p = &a; free(p); }
5、对同一块动态内存多次释放
void test() { int *p = (int *)malloc(100); free(p); free(p);//重复释放 }
6、动态开辟内存忘记释放(内存泄漏)
忘记释放不再使用的动态开辟的空间会造成内存泄漏。
void test() { int *p = (int *)malloc(100); if(NULL != p) { *p = 20; } //缺少free(p); } int main() { test(); while(1); }
切记:
动态开辟的空间一定要释放,并且正确释放 。
三、C/C++程序的内存开辟
C/C++程序内存分配的几个区域:
- 栈区(stack):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。 栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返
回地址等。
- 堆区(heap):一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。分配方式类似于链表。
- 数据段(静态区)(static)存放全局变量、静态数据。程序结束后由系统释放。
- 代码段:存放函数体(类成员函数和全局函数)的二进制代码。
实际上普通的局部变量是在栈区分配空间的,栈区的特点是在上面创建的变量出了作用域就销毁。但是被static修饰的变量存放在数据段(静态区),数据段的特点是在上面创建的变量,直到程序结束才销毁。所以生命周期变长。
四、柔性数组
1、柔性数组定义
柔性数组(flexible array)是定义在C99 中的,结构中的最后一个元素允许是未知大小的数组,这就叫做『柔性数组』成员。
例如:
typedef struct st_type { int i; int a[0];//柔性数组成员 }type_a;
有些编译器会报错无法编译可以改成:
typedef struct st_type { int i; int a[];//柔性数组成员 }type_a;
2、柔性数组的特点
- 结构中的柔性数组成员前面必须至少一个其他成员。
- sizeof 返回的这种结构大小不包括柔性数组的内存。
- 包含柔性数组成员的结构用malloc ()函数进行内存的动态分配,并且分配的内存应该大于结构的大小,以适应柔性数组的预期大小。
例如:
typedef struct st_type { int i; int a[0];//柔性数组成员 }type_a; printf("%d\n", sizeof(type_a));//输出的是4
例如:
typedef struct st_type { int i; int a[0];//柔性数组成员 }type_a; printf("%d\n", sizeof(type_a));//输出的是4
3、柔性数组的使用
//代码1 int i = 0; type_a *p = (type_a*)malloc(sizeof(type_a)+100*sizeof(int)); //业务处理 p->i = 100; for(i=0; i<100; i++) { p->a[i] = i; } free(p);
这样柔性数组成员a,相当于获得了100个整型元素的连续空间。
4、柔性数组的优势
上述的 type_a 结构也可以设计为:
//代码2 typedef struct st_type { int i; int *p_a; }type_a; type_a *p = (type_a *)malloc(sizeof(type_a)); p->i = 100; p->p_a = (int *)malloc(p->i*sizeof(int)); //业务处理 for(i=0; i<100; i++) { p->p_a[i] = i; } //释放空间 free(p->p_a); p->p_a = NULL; free(p); p = NULL;
上述 代码1 和代码2 可以完成同样的功能,但是 代码1 的实现有两个好处:
第一个好处是:方便内存释放
- 如果我们的代码是在一个给别人用的函数中,你在里面做了二次内存分配,并把整个结构体返回给用户。用户调用free可以释放结构体,但是用户并不知道这个结构体内的成员也需要free,所以你不能指望用户来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存一次性分配好了,并返回给用户一个结构体指针,用户做一次free就可以把所有的内存也给释放掉。
第二个好处是:这样有利于访问速度
- 连续的内存有益于提高访问速度,也有益于减少内存碎片。