大宗商品贸易集团数据治理实践,夯实数字基座 | 数字化标杆

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 袋鼠云数据治理团队,立足于打造全集团统一,能满足覆盖运管、风控、业务全过程数字化经营管理及分析决策的统一数据资产平台。对集团现有存量数据进行数据治理及挖掘,搭建数据管理体系,对增量数据进行有效管理和应用。通过梳理目前集团所有存量数据,提炼运营指标及管理指标,科学化管理公司数据资产和挖掘数据价值。

某大型央企是首批全国供应链创新与应用示范企业,在“十四五”规划期内以聚焦供应链管理核心主业作为主要战略发展方向。供应链运营管理以大宗商品贸易为主,其交易往往具有交易量巨大、交易环节复杂、风险交易难识别、风险客商难管控等痛点。


随着集团数字化转型不断深化,数据应用方面的需求不断扩展。但集团缺乏统一的大数据资产管理平台,导致在数据应用方面,出现数据价值不凸显、数据标准不统一、数据质量不可控、数据共享不畅通等问题。


在此背景下,该集团引入袋鼠云数据治理团队,立足于打造全集团统一,能满足覆盖运管、风控、业务全过程数字化经营管理及分析决策的统一数据资产平台。对集团现有存量数据进行数据治理及挖掘,搭建数据管理体系,对增量数据进行有效管理和应用。通过梳理目前集团所有存量数据,提炼运营指标及管理指标,科学化管理公司数据资产和挖掘数据价值。


01 围绕“数据治理、数据服务、数据应用”的数据治理方案

袋鼠云根据集团提出的数据治理需求,结合内部现有数据开发平台,以业务应用场景为导向,形成集团统一的数据治理方案。项目以数据治理、数据服务、数据应用三大方向展开实施,其中数据应用以聚焦供应链运营管理业务为核心,数据服务以满足集团下属各子公司数据需求为主,数据治理以统一集团数据归集方式、数据质量标准、元数据维护标准、数据建模标准为目标进行建设。


其中数据治理设计的步骤为:确定当前项目的目标和范围,设计本轮数据治理的模式、架构和方法。以集团当前提出的数据需求场景出发,针对场景数据进行数据治理,主要包括以下几个步骤:


1、架构设计

技术架构上,从场景需求出发,结合当前企业组织架构及数据权限出发,将数据中台设计为多项目空间加经典ODS、DWD、DWS、ADS四层结构,其中集团为主项目空间,其余业务供应链平台为子项目空间。另外,根据前期调研结果,结合当前集团业务范围,将业务根据业务主体进行了数据域的设计与划分,其中重点建设数据域为:


1)客商域:企业所服务的所有客户及供应商;

2)商品域:企业自营或代理商品,SKU;

3)交易域:客户与企业发生的所有交易行为,包括交易合同,订单,采购等;

4)风险域:企业发生诉讼,处罚等风险数据;

5)仓储物流域:所有仓库出入库,在途等信息;

6)公共域:系统码值,参数信息,组织架构,人员以及标准化映射信息。


通过分层与分域的设计,将集团原本传统数据架构转变为新数据架构,统一源端数据,建设公共事实层,建设服务层最后满足各个不同需求,有效解决传统数据架构存在的数据孤立,事实重复建设,资产盘点困难等问题,更适应当前集团发展阶段诉求。


2、数据统一归集

当前集团源端数据大体分为三类:第一种是传统业务数据,包含SAP系统、MDM系统、CRM系统、云链、高达、南北、OA等系统;第二种是第三方数据,包含船讯网、启信宝、行情数据、价格数据等;第三种是其他手工填报数据。


其中传统业务数据存在数据源多,数据量级分布不均,部分系统只能取得界面全量数据或为高度汇总报表数据等问题,使用数栈底层数据同步工具FlinkX将不同数据接入数据中台中。


第三方数据使用PySpark脚本任务,通过调取特定的API服务接口,完成数据的采集及简单清洗,接入数据中台。


手工填报数据通过完成填报报表的初步设计后,回流手工填报平台(当前使用饭软),进行定期同步、定期填报、定期回流采集的形式来完成数据的收集。


3、数据集中处理及标准设计

从架构设计出发,对已接入的源端数据,进行明细事实层的建模设计,进行指标体系的统计和收集。


明细事实层的建模设计秉持维度建模理念,根据不同的主题域,将ODS层数据进行特定范围的清洗,处理,加工后形成可复用性强的描述某一颗粒度下,某一业务行为的各项信息,纵向可以进行上钻下钻,横向可以对比。


针对指标层的加工处理,在引入数据中台之前,数据计算逻辑、指标口径都存放在SAP系统的代码中,无法进行有效复用。为了解决这一问题,根据指标体系设计方法论,统一定义指标体系的各信息(包含指标ID、指标名称、指标主题、业务口径、维度、修饰词、计算方式、计算频率、时间周期、业务对接人及开发负责人),在接下来企业的数据应用过程中,完成数据指标口径的收口和统一。


4、数据应用场景

数据应用场景以集团供应链运营管理为核心,分别对运营管理、物流管理、信用管理数据进行统一归集,按照业务指标逻辑进行数据处理开发,满足业务人员数据报表填报和数据统计分析应用场景。


运营管理场景:通过重新梳理SAP客户逾期、客户赊销、现货敞口库存等业务报表数据逻辑为基础,结合大数据平台从SAP底表取数能力,实现风险周报填报、签约情况分析、重大事项填报场景建设,有效减轻业务人员每周报表加工填报的工作压力,同时提高业务数据线上留存能力。


物流管理场景:以物流合同、物流供应商、供应商库点、库点库存、库点盘点记录数据为基础,进行统一汇聚处理,按照业务指标口径进行数据开发,实现物流合同看板、物流供应商看板、库点盘点密度看板、库存看板四大看板,为业务人员发现潜在风险和日常业务数据便捷查询提供有利条件。


信用管理场景:以客商授信额度、客商逾期、行业产品加工利润数据为核心,结合业务逻辑指标进行数据开发,实现授信额度跟踪、逾期数据分析、行业加工利润填报场景建设,为业务人员控制客商授信额度、发现客商潜在风险、明确当前各行业产品盈利情况提供有效支撑。


02  夯实数字基座,有效支撑数据应用

截至目前,集团数据中台共构建700余张表,数据执行任务总量500余个,其中ODS数据源始层同步任务200多个、DWD数据明细层清洗加工任务40多个、DWS数据汇总层汇总任务60多个、DIM数据维度层维度同步任务20多个、ADS数据应用层业务场景数据推送任务100多个。


满足集团供应链运管部物流仓储管理、客商信用管理、价格管理、运营管理等部门数据分析需求,实施搭建签约销售/采购看板、物流仓储看板、授信额度跟踪看板、逾期数据分析看板、运管风险逾期周报填报等业务场景。


《数据治理行业实践白皮书》下载地址:https://www.dtstack.com/resources/1001?src=szsm

《数栈V6.0产品白皮书》下载地址:https://www.dtstack.com/resources/1004?src=szsm

想了解或咨询更多有关大数据产品、行业解决方案、客户案例的朋友,浏览袋鼠云官网:https://www.dtstack.com/?src=szalykfz

相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
C语言 C++
【C语言】rand()函数(如何生成指定范围随机数)
【C语言】rand()函数(如何生成指定范围随机数)
611 0
|
11月前
|
运维 Cloud Native Java
热联集团:从 APISIX 迁移到云原生网关
我们将核心业务系统从 IDC 全栈迁移到阿里云后,并采用了云原生 API 网关,通过其独有的软硬一体的加速方案,相比普通 HTTPS 请求 TLS 握手时延降低一倍,极限 QPS 提升 80% 以上,运维效率也提升了 50%,此外,我们把 Nacos 迁移到 MSE Nacos,稳定性、性能和运维成本等方面都具备了明显的优势。
|
9月前
|
机器学习/深度学习 供应链 搜索推荐
优化销售预测:6种模型适用的场景与实战案例
不同行业的销售预测采用什么模型比较好?3分钟了解6种销售预测模型,以及适用行业场景。
2082 2
优化销售预测:6种模型适用的场景与实战案例
|
11月前
|
监控 算法 Java
jvm-48-java 变更导致压测应用性能下降,如何分析定位原因?
【11月更文挑战第17天】当JVM相关变更导致压测应用性能下降时,可通过检查变更内容(如JVM参数、Java版本、代码变更)、收集性能监控数据(使用JVM监控工具、应用性能监控工具、系统资源监控)、分析垃圾回收情况(GC日志分析、内存泄漏检查)、分析线程和锁(线程状态分析、锁竞争分析)及分析代码执行路径(使用代码性能分析工具、代码审查)等步骤来定位和解决问题。
221 6
|
安全 Java API
16 个最常用的 Java 实用程序类
【8月更文挑战第16天】
989 1
16 个最常用的 Java 实用程序类
|
弹性计算 负载均衡 网络协议
slb健康检查
阿里云SLB健康检查确保ECS实例高可用性,通过定期发送请求检测服务器状态。当服务器无法在设定时间内响应或连续多次失败,SLB会将其从负载均衡中移除,防止流量流向异常服务器。检查涉及端口、协议/路径、检查间隔、不健康与健康阈值等参数,允许用户定制化配置以适应不同应用需求。
478 2
|
图形学 人工智能 C#
从零起步,到亲手实现:一步步教你用Unity引擎搭建出令人惊叹的3D游戏世界,绝不错过的初学者友好型超详细指南 ——兼探索游戏设计奥秘与实践编程技巧的完美结合之旅
【8月更文挑战第31天】本文介绍如何使用Unity引擎从零开始创建简单的3D游戏世界,涵盖游戏对象创建、物理模拟、用户输入处理及动画效果。Unity是一款强大的跨平台游戏开发工具,支持多种编程语言,具有直观编辑器和丰富文档。文章指导读者创建新项目、添加立方体对象、编写移动脚本,并引入基础动画,帮助初学者快速掌握Unity开发核心概念,迈出游戏制作的第一步。
1002 1
|
存储 机器学习/深度学习 SQL
【Prompt Engineering:自我反思(Reflexion)】
自我反思(Reflexion)是一种通过语言反馈强化基于语言的智能体的新范式,无需微调模型即可提升其在决策、推理和编程等任务中的表现。该框架包括参与者(生成动作)、评估者(评分)和自我反思(生成反馈)三个部分,利用大语言模型生成具体反馈,帮助智能体从错误中快速学习,显著提高了多种任务的性能。
1202 2
【Prompt Engineering:自我反思(Reflexion)】
|
机器学习/深度学习 人工智能 安全
AI 绘画Stable Diffusion 研究(三)sd模型种类介绍及安装使用详解(1)
AI 绘画Stable Diffusion 研究(三)sd模型种类介绍及安装使用详解
2821 0
|
机器学习/深度学习 数据采集 人工智能
ERP系统中的人工智能与机器学习应用:提升企业智能化管理
【7月更文挑战第29天】 ERP系统中的人工智能与机器学习应用:提升企业智能化管理
1652 0